Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image
Electrical study of organic field effect transistors grown on flexible substrates
6th Global Experts Meeting on Nanomaterials and Nanotechnology
April 21-23, 2016 Valencia, Spain

Davoud Dastan

Savitribai Phule Pune University, India

Scientific Tracks Abstracts: J Nanomed Nanotechnol

Abstract:

Organic field effect transistors (FET) have been prepared on flexible substrates. A gate dielectric layer consists of organic and inorganic composite materials have been used for the enhancement of electrical characteristics of the FET. Nano-particulates titania were embedded into poly vinyl alcohol (PVA) and ammonium dichromate. The cross-linking of PVA with ammonium dichromate (PVA-ad) was performed with the exposure of ultraviolet (UV) irradiation. The solution of PVAad+TiO2 was spun onto rigid substrates. The gold contacts were made using thermal evaporation on top of the samples. In order to measure the electrical features of FET�??s, an active layer of copper phthalo-cyanine (CuPc6) was deposited andthe output characteristics of the devices were investigated using semiconductor parameter analyzer. The surface morphology of the prepared FET�??s was studied by means of Atomic Force Microscopic (AFM).The output characteristics results of devices exposed to UV light revealed higher mobility, on/off ratio, and threshold voltage with respect to the pristine samples.Moreover, devices with PVAad+TiO2 as gate dielectric exhibited better electrical performance compared to those with PVA-ad as gate dielectric. The AFM images illustrated higher surface roughness for irradiated devices. Additionally, granular and uniform morphology with grain sizes in the range of 20-50 nm were observed for FET devices.

Biography :

Davoud Dastan has completed his MSc from Savitribai Phule Pune University and is currently a PhD student in the same University. He has published more than 15 papers in reputed journals and also participated in more than 30 international conferences.

Email: d.dastan@yahoo.com