Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • RefSeek
  • Hamdard University
  • Directory of Abstract Indexing for Journals
  • OCLC- WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Recommended Webinars & Conferences
Journal Flyer
Flyer image
miR-34c plays a key role in Theileria-transformed macrophages and human cancer cell lines by targeting PRKAR2B
Annual Summit on Cell Signaling, Cell Therapy and Cancer Therapeutics
September 27-28, 2017 Chicago, USA

Malak Haidar, Hifzur Ansari, Zineb Rchiad, Fathia ben Rached, Arnab Pain and Gordon Langsley

Université Paris Descartes, France
Cochin Institute, France
King Abdullah University of Science and Technology, Saudi Arabia

Scientific Tracks Abstracts: J Stem Cell Res Ther


MicroRNAs (miRNAs) play critical roles in regulating a wide range of cellular signaling pathways; for example, both physiological and pathological processes in cancer. Here, we report on the role of miR-34c in regulating PKA activity during in cell transformation. Theileria is an intracellular eukaryotic parasite that transforms its bovine host leukocytes into disseminating leukomas that cause a widespread disease of economic importance called tropical theileriosis. By studying this unique model of cellular transformation we identified PRKAR2B (cAMP-dependent protein kinase type II-beta regulatory subunit) as a new miR-34c target gene. Overexpression of miR-34c repressed PRKAR2B levels and consequently increased PKA activity in Theileria-transformed leukocytes promoting their virulent disseminating tumor phenotype. We also validated miR-34c repression of PRKAR2B expression using human colon cancer (HCT-116) and promyelocytic leukemia (HL-60) cells. The identification of miR-34c as a novel regulator of PKA activity could improve understanding of glucose-independent growth of many different types of cancer.

Biography :

Malak Haidar is a Post-doctoral fellow is studying host-pathogen interaction of Theileria annulata causative agent of tropical theileriosis. She is focused in examining how different autocrine loops and epigenetic landscape changes contribute to infected macrophage virulence and how their oxidative stress status impacts on pathogenicity. She did her PhD in the laboratory of Cellular Biology of Apicomplexa in CNRS, INSERM, Paris, France, supervised by Prof. Gordon Langsley.