20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Recommended Webinars & Conferences
Journal Flyer
Flyer image
LPS from pathogenic Coxiella burnetii prevents trafficking to microbicidal phagolysosomes
International Congress on Bacteriology & Infectious Diseases
November 20-22, 2013 DoubleTree by Hilton Baltimore-BWI Airport, MD, USA

Eric Ghigo

Accepted Abstracts: J Bacteriol Parasitol

Abstract:

Variations in lipopolysaccharide (LPS), a bacterial outer membrane component, determine virulence of the obligate intracellular bacterium Coxiella burnetii, but the underlying mechanisms are unknown. We find that while avirulent C. burnetii LPS (avLPS) stimulates host p38α-MAPK signaling required for proper trafficking of bacteria containing compartments to lysosomes for destruction, pathogenic C. burnetii LPS (vLPS) does not. The defect in vLPS and pathogenic C. burnetii targeting to degradative compartments involves an antagonistic engagement of TLR4 by vLPS, lack of p38α-MAPK-driven phosphorylation, and block in recruitment of the homotypic fusion and protein-sorting complex component Vps41 to vLPS-containing vesicles. An upstream activator of p38α-MAPK or phosphomimetic mutant Vps41-S796E expression overrides the inhibition, allowing vLPS and pathogenic C. burnetii targeting to phagolysosomes. Thus, p38α-MAPK and its crosstalk with Vps41 play a central role in trafficking bacteria to phagolysosomes. Pathogenic C. burnetii has evolved LPS variations to evade this host response and thrive intracellularly.

bellicon