Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Efficacious peptide-based plus adjuvant vaccine against SARS-CoV-2
39th Euro Global Summit and Expo on Vaccines & Vaccination
July 05-06,2021 | WEBINAR

Tarek Zieneldien, Janice Kim, Xiaoyang Lin, Haiqiang Yang and Chuanhai Cao

University of South Florida, USA

Scientific Tracks Abstracts: J Vaccines Vaccin

Abstract:

Currently, there are no effective drugs that can halt the SARS-CoV-2 pandemic, but vaccines have historically helped us eliminate smallpox and successfully control numerous viral diseases. The spike protein (S) of SARS-CoV-2 binds to angiotensin-converting enzyme type II (ACE2) through the receptor binding domain (RDB), which contributes to viral attachment, fusion, and entry. Thus, targeting the S protein will inhibit viral entry, therefore stopping infection. We have selected dominant and specific B cell epitopes of S protein using the antigenicity predicting and homology analysis approaches as vaccine candidates. These peptides were mixed with different adjuvants (QS21 or Al(OH)3) and administered to BALB/c and C55/B6 mice by Sub-Q. Our peptide-based vaccine can induce a high and persistent antibody response against the administered peptides and S protein. Overall, the Al(OH)3 adjuvant generates a longer immune response than QS21, with the Al(OH)3 increasing CD3+, CD4+, and CD8+ T cells and decreasing B cell response compared to QS21. The QS21 adjuvant increases B cell and decreases T cell response compared to the Al(OH)3 adjuvant. When compared to convalescence samples, the antibody response of peptide plus adjuvant vaccine generated similar patterns tested by the epitope mapping assay. The antisera from the peptide vaccine also showed neutralization activity, which was tested using the pseudoviral particle assay. We also identified that some of the selected peptides show the potential for diagnostic ability as full proteins. The data revealed that this peptide mixture with the traditional Al(OH)3 adjuvant can produce a durable B cell and potent T cell response. The advantage of peptide-based vaccines is their ability to prevent autoimmune responses, while allowing the introduction of new peptides to manage mutations. The results showed no adverse effects associated with the vaccine, making it suitable for current and future SARS-CoV-2 infections.

Biography :

Tarek Zieneldien has a background in biomedical sciences and infection control. He is very passionate about microbiology and vaccine development, and has furthered his knowledge in these fields by working for Dr. Chuanhai Cao at the University of South Florida. This has allowed him to study the role of the immune system in the development of various diseases, as well as experimenting to find cures to diseases through the modulation of the immune system.