Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Design and production of conjugate vaccines against S. Paratyphi A using an o-linked glycosylation system in vivo
Joint Event on 31st Euro Global Summit and Expo on Vaccines & Vaccination & 4th World Congress and Exhibition on Antibiotics and Antibiotic Resistance
June 14-16, 2018 Barcelona, Spain

Hengliang Wang, Jun Wu and Ming Zeng

Beijing Institute of Biotechnology, China
National Institutes for Food and Drug Control, China

Posters & Accepted Abstracts: J Vaccines Vaccin

Abstract:

Enteric fever, mainly caused by Salmonella enterica serovar Paratyphi A, remains a common and serious infectious disease worldwide. As yet, there are no licensed vaccines against S. Paratyphi A. Biosynthesis of conjugate vaccines has become a promising approach against bacterial infection. However, the popular biosynthetic strategy using N-linked glycosylation systems does not recognize the specialized O-polysaccharide structure of S. Paratyphi A. Here, we describe an O-linked glycosylation approach, the only currently available glycosylation system suitable for an S. Paratyphi A conjugate vaccine. We successfully generated a recombinant S. Paratyphi A strain with a longer O-polysaccharide chain and transformed the O-linked glycosylation system into the strain. Thus, we avoided the need for construction of an O-polysaccharide expression vector. In vivo assays indicated that this conjugate vaccine could evoke IgG1 antibody to O-antigen of S. Paratyphi A strain CMCC 50973 and elicit bactericidal activity against S. Paratyphi A strain CMCC 50973 and five other epidemic strains. Furthermore, we replaced the peptides after the glycosylation site (Ser) with an antigenic peptide (P2). The results showed that the anti-lipopolysaccharide antibody titer, bactericidal activity of serum and protective effect during animal challenge could be improved, indicating a potential strategy for further vaccine design. Our system provides an easier and more economical method for the production of S. Paratyphi A conjugate vaccines. Modification of the glycosylation site sequon provides a potential approach for the development of next-generation precise conjugate vaccines.

Biography :

Hengliang Wang has his expertise in research on pathogenic mechanism and gene-engineering vaccines of bacterial pathogens. He and his collaborators developed a novel synthetic biology strategy to produce bio conjugate vaccines using an O-linked protein glycosylation system. This system was proved to function in many gram-negative pathogens.
Email:wanghl@bmi.ac.cn