Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Microbial & Biochemical Technology

Rosalie Reed Rodrigues Coelho

Publications
  • Research Article
    Trichoderma atroviride 102C1 Mutant: A High Endoxylanase Producer for Assisting Lignocellulosic Material Degradation
    Author(s): Mariana Menezes Quadros de Oliveira, André Luiz Grigorevski Grigorevski-Lima, Marcella Novaes Franco-Cirigliano, Rodrigo Pires do Nascimento, Elba Pinto da Silva Bon and Rosalie Reed Rodrigues CoelhoMariana Menezes Quadros de Oliveira, André Luiz Grigorevski Grigorevski-Lima, Marcella Novaes Franco-Cirigliano, Rodrigo Pires do Nascimento, Elba Pinto da Silva Bon and Rosalie Reed Rodrigues Coelho

    Endoxylanases have played an important role in many industrial processes as bleachers to kraft pulp, animal feeds and baked goods. Also, nowadays, a special attention has been devoted to the role of these enzymes in saccharification of lignocellulose biomass for biofuels production. Trichoderma species are among fungi those that have been most extensively studied, due to their efficient production of these enzymes. Among the different strategies for improving the production and biochemical aspects of enzymes of commercial interest, mutations induced using chemical agents and/or physical devices can be cited. In the present strain T. atroviride 102C1 was obtained by using UV light and nitrosoguanidine as mutagenic agents. A factorial design (central composite rotational design, CCRD) was performed to estimate the optimal levels of C (sugarcane bagasse) and N (corn steep liquor) sources.. View More»
    DOI: 10.4172/1948-5948.1000150

    Abstract PDF