20+ Million Readerbase
Indexed In
  • Open J Gate
  • The Global Impact Factor (GIF)
  • Open Archive Initiative
  • VieSearch
  • International Society of Universal Research in Sciences
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • Publons
  • Google Scholar
Share This Page
Recommended Webinars & Conferences
Journal Flyer
Flyer image

Abstract

Improving Anaerobic Methane Production from Ammonium-rich Piggery Waste in a Zeolite-fixed Bioreactor and Evaluation of Ammonium Adsorbed on Zeolite A-3 as Fertilizer

Cang Yu, Dawei Li, Qinghong Wang, Zhenya Zhang and Yingnan Yang

To mitigate ammonia inhibition and enhance methane production, a zeolite-fixed bioreactor was developed for anaerobic digestion of ammonium-rich piggery wastes. Ammonium adsorption on zeolite A-3 fitted with the pseudo-second-order kinetic model and can be described by both Langmuir and Freundlich isotherms. Desorption of ammonium from saturated zeolite fits the first-order reversible reaction kinetic. The zeolite-fixed bioreactor with zeolite loading rate of 10 g l-1 showed the shortest startup period of 13 days and achieved the highest methane yield of 354.2 ml g-1-VS and the largest COD removal rate of 75.37%. Due to the effective mitigation of ammonia inhibition and enhancement of methane production, zeolite-fixed bioreactor is a good option for practical anaerobic digestion of ammonium-rich piggery wastes. Ammonium saturated zeolite can be directly used as fertilizer to decrease annual production of nitrogen fertilizer. Besides, regeneration of zeolite using Na2SO4 solution also obtained a (NH4)2SO4 by-product, which is nice nitrogenous fertilizer.