Abstract

Impaired DNA Damage Repair Capacity is Associated with an Increased Risk of Esophageal Adenocarcinoma: A Case Control Study

Yonggang He, Jian Gu, Yilei Gong, Wong-Ho Chow, Jaffer Ajani and Xifeng Wu

Background: Inherited suboptimal DNA repair capacity in peripheral blood lymphocytes (PBLs) can be unmasked by mutagen challenge and has been associated with susceptibility to cancer. Purpose: To use comet assay to assess the esophageal adenocarcinoma (EAC) risk in relation to mutageninduced DNA damage in PBLs.
Materials and methods: In a case-control study, the baseline, benzo[a]pyrene diol epoxide (BPDE)-induced, and γ radiation-induced DNA damage were quantified by the Olive tail moment (TM) in PBLs from 172 Caucasian EAC patients and 154 healthy controls who were frequency matched on age and gender. Logistic regression analysis was used to calculate odds ratios (OR) and 95% confidence intervals (CI) to estimate EAC risk in relation to DNA damage.
Results: EAC patients tended to have higher DNA damage than controls, as measured by baseline, net BPDEand net γ radiation-induced TM, but the difference was statistically significant only for net BPDE-induced DNA damage (0.88 ± 0.94 vs. 0.62 ± 0.77, P=0.031). Using the 75th percentile TM in the controls as cutoff point, we found that high levels of net BPDE- and γ radiation-induced DNA damage were associated with significantly increased risks of EAC, with adjusted ORs of 2.15 (95% CI, 1.13-4.10) and 2.27 (95% CI, 1.24–4.16), respectively. EAC risks were further increased among individuals with both net mutagen-induced DNA damages and exposure to gastroesophageal reflux disease or smoking, known risk factors for EAC.
Conclusion: Our results suggest impaired repair capacity of mutagen-induced DNA damage in PBLs assessed by comet assay may be a risk factor of EAC.