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SUPPLEMENTARY METHODS

Institutional review

Institutional Review Board approval was obtained for all described 
work under Beth Israel Lahey Health (BILH) IRBs 2022P000328 
and 2022P000288. The Harvard T. H. Chan School of Public 
Health IRB20-1979 provided non-human subjects research 
determination for virus culture work.

Defining specific patient groups

For the electronic records review arm of the study, we extracted 
information from the clinical-research data repository of Beth Israel 
Deaconess Medical Center Boston, a 743-bed tertiary-care teaching 
hospital, for each positive result for PCR tests for COVID-19 that 
had been performed in the course of routine clinical care between 
March 2020 and April 2023. Written consent was waived by 
the IRB because this was a records review study only, presenting 
minimal risk to patients. The following information was extracted: 
the patient’s demographics (age, gender, and self-reported race/
ethnicity), socioeconomic status (using the median neighborhood 
household income for the patient’s ZIP code, obtained via the 
2020 U.S. census, as a proxy), care setting (inpatient, outpatient, 
emergency ward, or other institution), presentation/disposition 
(based on vital signs, which we combined into a measure of initial 
presentation), outcome (survived, died with COVID-19 as the cause 
of death, died with COVID-19 as an incidental finding), vaccination 
status (vaccinated, unvaccinated, or unknown), treatment (CPT-
encoded procedures, remdesivir (GS-5734; Gilead Sciences, Foster 
City, CA) administration, steroid administration), comorbidities 
(according to the Charlson Comorbidity Index (CCI): body-
mass index, diabetes, chronic heart disease, chronic lung disease, 
chronic renal disease, liver disease, dementia, chronic neurological 
conditions, connective-tissue disease, Human Immunodeficiency 
Virus (HIV), and malignancy), and immunosuppression status 

(CD4+ T-count <100 cells/µL, hematologic malignancy, chemo/
immuno-modulating agent alone or in setting of solid malignancy, 
organ transplant, or rheumatologic/inflammatory condition) [1,2]. 
The rationale for extracting these data items specifically was twofold: 
first, this list includes the complete COVID-19 core diagnostic 
data at federal and state levels; second, it includes data necessary 
for calculating the well validated 4C mortality score for SARS-
CoV-2 [3]. ICD-10 codes corresponding to the listed comorbidities 
were determined by a physician (Dr. Arnaout) following prior 
methodologies but updated for 2022-2023. Gender of the patient 
was inferred from the database record created for each sample at its 
time of collection [4].

At presentation, patients were considered sick if any of the 
following were true within 1 day of the PCR test sample: systolic 
blood pressure <90 mmHg, diastolic blood pressure <60 mmHg, 
heart rate >100 beats per minute, respiratory rate >18 breaths per 
minute, or temperature >99.1˚F. They were otherwise considered 
well, with the exception that if no values were recorded (NULL 
in the data repository) for all criteria, presentation was considered 
unknown and therefore not assigned.

Patients were designated as immunocompromised at the time of 
PCR testing if one of the following were true: on their most recent 
T-cell subset analysis report, their absolute CD4+ cell count was 
<100 cells/µl; they had a diagnosis of either lymphoma or leukemia 
associated with a healthcare encounter (visit, admission, or phone 
call) either before the PCR test or within 60 days after the PCR test; 
they were on any of the following medications on an ongoing basis, 
prescribed prior to the PCR test and with enough refills to include 
the time up to 30 days prior to the PCR test: abatacept, adalimumab, 
anakinra, azathioprine, basiliximab, budesonide, certolizumab, 
cyclosporine, daclizumab, dexamethasone, everolimus, etanercept, 
golimumab, infliximab, ixekizumab, leflunomide, lenalidomide, 
methotrexate, mycophenolate, natalizumab, pomalidomide, 
prednisone, rituximab, secukinumab, serolimus, tacrolimus, 
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tocilizumab, tofacitinib, ustekinumab, or vedolizumab. Otherwise, 
they were designated not immunocompromised.

Supplementary Table 1 provides further details for the above 
methods.

Viral load

The SARS-CoV-2 RT-qPCR testing in this study was performed 
on three Abbott molecular platforms: m2000, Alinity m, and 
Alinity 4-Plex (Abbott Molecular, Des Plaines, IL, USA). These 
detect identical SARS-CoV-2 N and RdRp gene targets. They are 
extremely sensitive, with LOD of ~100 copies/mL. They output 
a quantitative Fractional Cycle Number (FCN), a type of Ct 
value described in detail elsewhere [5]. Together these platforms 
accounted for 46,726 positive tests.

Ct values were converted to viral loads in units of copies of viral 
mRNA per mL using the public Python package ct2vl as previously 
reported [6]. Briefly, this software was validated via calibration 
curves established for all platforms using an extended SeraCare 
panel (LGC Seracare, Milford, MA) panel based on a SARS-CoV-2 
genome incorporated into replication-incompetent, enveloped 
Sindbis virus and calibrated based on digital PCR at US National 
Institutes of Standards and Technology (NIST) and LGC/Seracare 
[7]. Validation material ranged in viral load from 300 to 106 
viral genome copies/mL. Results were harmonized with the cycle 
threshold for a spiked internal control also amplified in each SARS-
CoV-2 assay to confirm lack of PCR inhibition and accurate viral 
load output. The standards, modeling SARS-CoV-2 virus, were run 
through all stages of sample preparation and extraction to allow 
appropriate comparison with identically processed patient samples. 
R2 was ~0.99 for all calibration determinations, indicating assays 
are robustly quantitative.

Presumed SARS CoV-2 variant 

Presumed variant was inferred from the date of sample collection 
based on the data presented by covariants showing the frequency 
of sequencing particular variants in Massachusetts, the United 
States, and other locations [8]. Specimens from before June 7, 2021 
were annotated as being an early variant. Specimens from between 
July 7, 2021 and December 6, 2021 were annotated delta variant. 
Specimens from after January 3, 2022 were annotated as omicron 
variant. Results from the month between windows, when more 
than one major variant was common, were not annotated with a 
presumed variant and are omitted from by-variant comparisons.

Evaluation of antigen tests vs. PCR

Patients seeking COVID testing at a drive-through testing site near 
Boston affiliated with our medical center between May 23 and 
November 4 of 2022 were offered the opportunity to participate 
in a separate arm, providing a comparative, parallel prospective 
study [9,10]. Patients in this arm of the study provided verbal 
consent to participate; the IRB waived written consent due to a 
concern that contact with written materials would pose an undue 
risk of transmission of the virus, out-weighing the minimal risk 
of this study. Both symptomatic and asymptomatic individuals, 
with diverse demographics (age, race, sex, socio-economic status), 
were enrolled. Each patient who consented had both a standard-
of-care PCR tests and two OTC antigen tests performed (Abbott 
BinaxNow COVID-19 Ag card and care start COVID-19 antigen 
home test). The PCR test was performed on material collected 

with a nasopharyngeal swab. SARS-CoV-2 RT-qPCR testing was 
performed using the Abbott m2000 real time or Alinity m SARS-
CoV-2 assays according to the manufacturer’s instructions, yielding, 
for each positive sample, a Ct value which was converted to viral 
load as previously described. Specimens for the antigen tests were 
collected with separate nasal swabs for each test, according to the 
manufacturer’s instructions. These were collected and the tests 
performed by study personnel after informed consent was obtained 
on-site within the time-frame constraints detailed in each test’s 
instructions for use, as per IRB. In order to extrapolate antigen-test 
performance from this subset to all patients, positivity vs. viral load 
was modeled by logistic regression (the logistic regression function 
in Python’s scikit-learn library) [11]. Logistic Regression converges 
on optimal parameters in a model predicting the probability 
of a positive test based on viral load. Parameters were predicted 
separately for each test. The equation for probability was a standard 
sigmoid constrained to the range 0-1 (i.e., the lowest probability 

is zero and the highest probability is 1): p(test success) =  
where v, the independent variable, is log10 of the viral load. This 
constraint leaves two free parameters: v0 is the midpoint, i.e. the 
model’s estimate of where the success rate passes 50%, while k 
controls the steepness, i.e. the change in viral load to change in 
probability of being positive.

Antigen tests and performance

In the head-to-head comparison of PCR and antigen test results, 
281 patients consented to participate. Of the PCR samples 
collected, 277 were tested; the remaining four were mishandled or 
leaked. Of the 277, 65 had a positive COVID-19 result by PCR 
(23%). PCR-positive samples were tested on either the Alinity m 
SARS-CoV-2 real time RT-PCR assay or the Alinity m Resp-4-Plex 
PCR assay. Viral loads in the PCR-positive patients ranged from 
approximately 10 to approximately 109 copies/mL, with a peak in 
the distribution between 106 and 108. Of the 65 positive samples, 
three were sequenced and 20 selected at random were used to 
assess contagiousness in viral culture.

Of 65 patients with positive PCR tests, 43 tested positive on the 
Binax antigen test and 40 tested positive on the CareStart antigen 
test. No invalid antigen tests (lacking the control line) were observed. 
Only one of the patients who tested negative by PCR tested positive 
on the antigen tests (both Binax and CareStart), confirming the 
high specificity of these tests. The proportion of positive antigen 
tests varied with viral load. At viral loads less than 103 copies/mL, 
both antigen tests were always negative; at viral loads greater than 
107 copies/mL, both were always positive. However, there was an 
overlap of antigen-test-positive and antigen-test-negative results at 
intermediate viral loads (Figure 3a). k and v0 values (see Methods) 
were comparable between the two tests (k=1.184, v0=4.538 for 
Binax and k=1.142, v0=4.995 for CareStart). The resulting S-shaped 
curves were used to predict antigen test performance in the web 
portal.

Contagiousness

As freeze-thaw does not impact viral viability, samples from the 
comparative study were stored at 4˚C until contagiousness testing, 
which was done within a four-day time period on a random 
sample of the PCR-positive samples. Quantitative viral culture was 
performed using Vero E6 cells (ATCC CRL-1586) seeded on a 
6-well flat bottom plate at 0.3×106 cells per well in Eagle’s Minimum 
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orders of magnitude [19]. The Kolmogorov-Smirnov test (KS; scipy.
stats.kstest) was used to compare distributions. This test was used 
because data were not distributed normally and KS does not require 
normality (unlike, for example, the t-test, which requires normal 
distributions). KS tests the null hypothesis that the distributions of 
viral loads for two patient groups are statistically indistinguishable 
[20]. The p-value gives the probability that distributions from the 
two groups are drawn from the same underlying distribution. A 
large p-value means the two groups are statistically indistinguishable; 
a small p-value means they are different. Interpretation of p-values 
as significant vs. not significant requires a significance threshold, 
which requires correction for multiple comparisons if multiple 
comparisons are performed [21,22]. Because the number of 
comparisons performed via the web portal is up to the user, un-
corrected p-values are reported, with interpretation as significant or 
not significant left to the user.

Software and hardware

Data extraction, annotation, statistics, and analyses were 
performed using standard Unix tools and Python 3.9+ using 
the pandas, numpy, scipy, and scikit libraries and the interactive 
Jupyter notebook environment. Figures were created using Python 
graphics libraries matplotlib and seaborn, and OmniGraffle 7 (The 
Omni Group, Seattle, WA), or by custom JavaScript/d3/Svelte 
components on the web portal.

Role of the funding source

Funding sources had no role in study design; collection, analysis, 
or interpretation of the data; writing; or in the decision to publish.
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Figure S1: User-interface checkboxes: The web portal allows users to select cohorts by patient demographics, comorbidities, presentation, treatment, 
and socioeconomic status. Users can define and compare complex subgroups by selecting multiple characteristics via checkboxes, as shown.
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Figure S2: Sequencing late-2022 strain and generalizability of Massachusetts-level results to the United States as a whole. Results of sequencing of 
a BA5.2/Clade 22B patient sample from Aug 2022-Sep 2022 (97.6% coverage). (a) Sample relative to COVID-19 phylogeny (with clade labels). (b) 
First 64 of the 72 nucleotide substitutions relative to the original Wuhan strain. (c) 52 amino acid substitutions relative to the Wuhan strain. (d) The 
five unique (“private”) mutations relative to the phylogenetic tree. (e) Distribution of strains in Massachusetts near the time of the sample according 
to covariants.org. (f) Comparison by frequency of the strains circulating in Massachusetts to those circulating in the United States at the same times 
demonstrating generalizability of Massachusetts-state variant patterns to the country as a whole. Red line, 1:1. Gray, early strains; purple, delta strains; 
green, omicron strains. R2 is for least-squares linear regression of USA vs. Massachusetts data (regression slope=0.97, intercept=0.00).


