Articles published in Journal of Petroleum & Environmental Biotechnology have been cited by esteemed scholars and scientists all around the world. Journal of Petroleum & Environmental Biotechnology has got h-index 39, which means every article in Journal of Petroleum & Environmental Biotechnology has got 39 average citations.

Following are the list of articles that have cited the articles published in Journal of Petroleum & Environmental Biotechnology.

  2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010

Total published articles

40 56 60 53 18 16 31 38 61 57 35 43 34 12 4

Research, Review articles and Editorials

3 15 10 13 8 11 1 35 53 53 30 33 21 8 4

Research communications, Review communications, Editorial communications, Case reports and Commentary

20 41 50 40 10 5 30 3 8 4 5 10 13 4 0

Conference proceedings

23 8 5 14 5 0 100 168 168 118 175 188 89 0 0

Citations received as per Google Scholar, other indexing platforms and portals

488 589 699 790 653 601 563 460 389 349 171 70 20 36 0
Journal total citations count 5903
Journal impact factor 1.72
Journal 5 years impact factor 2.78
Journal cite score 20.15
Journal h-index 39
Important citations

Zhang K, Bonito G, Hsu CM, Hameed K, Vilgalys R, Liao HL. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020 May;10(5):754.

Jha S, Pudake RN. Molecular mechanism of plant–nanoparticle interactions. InPlant Nanotechnology 2016 (pp. 155-181). Springer, Cham.

Jha S, Pudake RN. Molecular mechanism of plant–nanoparticle interactions. InPlant Nanotechnology 2016 (pp. 155-181). Springer, Cham.

Yuan W, Zhou Y, Liu X, Wang J. New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater. Environmental science & technology. 2019 Oct 16;53(21):12715-24.

Ryzhenko NO, Kavetsky SV, Kavetsky VM. Cd, Zn, Cu, Pb, Co, Ni phytotoxicity assessment. Polish Journal of Soil Science. 2018 Jan 15;50(2):197.

Pawar VA, Laware SL. Seed priming a critical review. Int. J. Sci. Res. Biol. Sci. 2018 Oct;5:94-101.

Vats A, Mishra S. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. Environmental Science and Pollution Research. 2017 Apr 1;24(12):11650-62.

Hatami M, Hosseini SM, Ghorbanpour M, Kariman K. Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere. 2019 Oct 1;233:920-35.

Margenot AJ, Rippner DA, Dumlao MR, Nezami S, Green PG, Parikh SJ, McElrone AJ. Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant and Soil. 2018 Oct;431(1):333-45.

Liu J, Dhungana B, Cobb GP. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica). Chemosphere. 2018 Sep 1;206:330-7.

Dai Y, Wang Z, Zhao J, Xu L, Xu L, Yu X, Wei Y, Xing B. Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environmental Science: Nano. 2018;5(10):2269-81.

Yekeen TA, Azeez MA, Lateef A, Asafa TB, Oladipo IC, Badmus JA, Adejumo SA, Ajibola AA. Cytogenotoxicity potentials of cocoa pod and bean-mediated green synthesized silver nanoparticles on Allium cepa cells. Caryologia. 2017 Oct 2;70(4):366-77.

Mattiello A, Marchiol L. Application of nanotechnology in agriculture: Assessment of TiO2 nanoparticle effects on barley. Application of Titanium Dioxide; Janus, M., Ed.; InTech: London, UK. 2017 Jul 26:23-39.

Martínez-Fernández D, Vítková M, Michálková Z, Komárek M. Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: implications for plant physiology. InPhytoremediation 2017 (pp. 369-403). Springer, Cham.

Singh D, Kumar A. Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology. 2018 Jan;27(1):23-31.

Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M. Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water, Air, & Soil Pollution. 2019 Feb 1;230(2):48.

Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L. Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE transactions on nanobioscience. 2017 Jun 14;16(7):563-70.

Liu J, Dhungana B, Cobb GP. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environmental toxicology and chemistry. 2018 Jan;37(1):11-20.

Liu J, Dhungana B, Cobb GP. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environmental toxicology and chemistry. 2018 Jan;37(1):11-20.

Jampílek J, Krá?ová K. Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. Nanotechnology. 2017:177-226.