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ABSTRACT

It is proposed that excessive consumption of high carbohydrate and high glycemic index (GI) diets, typical of the so-
called Western diet, converts human erythrocytes into systemic sources of methylglyoxal (MG) and glycated protein,
including alpha-synuclein. This is due to activity-induced deamidation of asparagine residues in the glycolytic enzyme
triosephosphate isomerase (TPI), which can result in loss of enzyme activity and accumulation of the MG precursor
dihydroxyacetone-phosphate. Under such circumstances, erythrocytic MG could provoke protein glycation in the
tissues, including the brain, and may be responsible for much age-associated macromolecular modification. The
naturally-occurring and pluripotent dipeptide carnosine (beta-alanyl-L-histidine) is enriched in erythrocytes (10-fold
compared to sera). Carnosine could help to ameliorate MG generation and reactivity, due to its ability to (i) partially
inhibit glycolysis and suppress MG generation and (ii) prevent MG-induced protein glycation, It is concluded that
persistent consumption of high GI diets should be avoided, and carnosine, administered orally or intra-nasally to

enhance access to the brain, could be explored with respect to agerelated conditions including type-2 diabetes and

neurodegeneration.
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INTRODUCTION

It is clear that changes in cellular energy metabolism play
important and even causal roles in onset and progression of
aging; excessive glycolysis appears to accelerate aging onset,
whereas upregulation of mitochondrial ATP generation appears
to be somewhat protective towards age-related dysfunction [1-3].
The fact that human erythrocytes are solely glycolytic raises
questions concerning their possible causal role towards aging
generally and neurodegeneration in particular. A typical
characteristic of cellular aging and associated dysfunction is the
accumulation of altered protein, obvious pathological examples
being amyloid peptide plaques and Lewy bodies in Alzheimer’s
disease (AD) and Parkinson’s disease (PD), respectively. Indeed,
this suggestion is reinforced by the recent finding that
erythrocytes obtained from Alzheimer’s disease patients appear
to possess lower levels of certain protective activities (20S
proteasome and glyoxalase-1), functions that are usually regarded
as exerting anti-aging roles [4]. That erythrocytes may influence

aging onset or development is supported by two more recent
papers which discuss (i) the causal effects of glycemic index (GI)
and load with respect to type-2 diabetes in humans [5], and (ii)
age-related changes in mouse erythrocyte metabolism following
parabiosis [6]. Two other papers have recently explored the
potential efficacy of the endogenous dipeptide carnosine (beta-
alanyl-L-histidine) towards brain disorders [7] and the effects of
carnosine supplementation on cognitive impairment in human
subjects [8].

The objectives of the present communication are threefold. First,
to suggest that high GI diets in humans induce erythrocytes to
perform almost continuous glycolysis, a likely consequence of
which is enhanced production of the reactive bicarbonyl
methylglyoxal (MG); MG has been suggested to play a causal role
in much agerelated dysfunction including type-2 diabetes and
cognitive dysfunction [9,10] via glycation of proteins, amino-
lipids and nucleic acid [11,12]. Secondly, to suggest that high GI
diets may convert erythrocytes into systemic sources of MG and
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macromolecular modification throughout the body. Thirdly, to
propose that carnosine’s pluripotent properties towards energy
metabolism and proteostasis [13] can exert ameliorative activity
with respect to MG generation and/or its reactivity, and, under
certain circumstances, may help to suppress agerelated
dysfunction.

GLYCOLYSIS AND AGE-RELATED
MACROMOLECULAR MODIFICATION

Much age-related modifications of proteins, lipids and nucleic
acids mostly occurs following generation of highly-reactive
products and intermediates of normal metabolism. While the
production of reactive oxygen species (ROS) has been regarded
as a consequence of mitochondrial metabolism and have long
been regarded as causal to much agerelated dysfunction, it is
important to note that glycolysis can directly generate
dihydroxyacetone-phosphate  (DHAP) and glyceraldehyde-3-
phosphate (G3P), highly reactive intermediates that can directly
modify (glycate) proteins. Furthermore, both these compounds
can spontaneously decompose into methylglyoxal (MG) which is
even more reactive [10]. Indeed glycolytically-generated MG is
regarded as a major source of protein glycation associated with
not only aging but much of the protein modifications
(secondary complications) which accompany type-2 diabetes [11].
It is also important to note that many of the processes or agents
which delay aging onset have a common characteristic, namely
partial suppression of carbohydrate catabolism which decreases

glycolytic flux [1-3,12,13].

In contrast, two recent studies have shown that the age-related
neurodegenerative disease, AD, is associated with lowered
glycolytic function [14,15], a conclusion which appears to
contradict the notion that agerelated dysfunction is a
consequence of glycolytic excess. It is, however, possible to
reconcile this apparent dilemma by suggesting that dietary-
induced excessive glycolysis decreases the activity of the glycolytic
enzyme triosephosphate isomerase (TPI) in either or both
erythrocytes and astrocytes. Because TPI catalyses the conversion
of DHAP into G3P, loss or decline in its activity will cause
DHAP to accumulate and enhance MG formation and
consequential protein glycation [16]; indeed much evidence
shows a strong associated between protein glycation and AD

pathology [17,18].

Glycolysis in erythrocytes: Triose-phosphate isomerase
inactivation

The process of glycolysis involves the release of energy, as ATP,
mediated by the step-wise conversion of glucose to lactic acid.
One of the steps is carried out by the enzyme triose-phosphate
isomerase (TPI). TPI catalyses the conversion of DHAP into
G3P, both of which are generated by the action of aldolase on
fructose-1.6-diphosphate. However TPI is not a true catalyst
because its structure can become altered as result of its catalytic
activity via a process which has been termed “molecular wear
and tear” [19]. Some 30 years ago it was found by Gracy and co-
workers [20] that, as a consequence of its catalytic action, certain
asparagine residues (15 and 71) in TPI spontaneously deamidate
into aspartic acid residues. It was concluded that “the
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probability of deamidation of an individual TPI molecule is a
function of the number of times that it is used as a catalyst” [21].
A consequence of such deamidation is the disassociation of the
dimeric enzyme into monomers and their subsequent
proteolytic destruction. As erythrocytes are unable to synthesize
proteins, due to lack of nuclei and ribosomes, it is obvious that
should TPI activity become ratelimiting, then MG generation
from the accumulated DHAP would accelerate [22]. However,
TPI activity in erythrocytes is reported to be more than 3-times
that of any other glycolytic enzyme [23], which suggests an
evolutionary adaptation to prevent TPl becoming rate-limiting

during the normal (limited) lifespan of the human erythrocyte.

It is reasonable to suggest that the human diet has radically
changed from that of the “hunter-gatherer” during which much
of humankind’s evolution occurred. The modern “Western”
diet contains a much higher amount of carbohydrate than that
of preceding generations, and almost certainly is very different
indeed from that of the hunter-gatherer in terms of carbohydrate
intake. Consequently, it is suggested that the high GI and load
of the current “Western” diet can induce a decline in
erythrocytic TPI (as outlined above) which in turn provokes an
increase in MG formation. Thus it is suggested that erythrocyte
TPI maybe a metabolic “Achilles Heel” when presented with the
current high carbohydrate “Western” diet. Although the
presence of erythrocyte glyoxalase activity would be expected to
facilitate MG detoxification, this enzyme can become inactivated
by excess MG and furthermore has been found to decline in
aged erythrocytes [24].

Erythrocytes and methylglyoxal

As outlined above, it is likely that diets of high GI and almost
continuous carbohydrate load can provoke MG accumulation
within erythrocytes in the modern human consuming an
overabundance of carbohydrate. One possible consequence
could be erythrocyte-mediated MG distribution throughout the
body; indeed as the erythrocyte membrane is permeable to MG
then it likely that the highly glycolytic erythrocyte is a “Trojan
Horse” supplying the deleterious glycating agent to many tissues
including the brain [16]. Furthermore, MG can glycate proteins
within the erythrocyte and thus contribute to the glycotoxin
burden, in addition to the glycated proteins in the diet [25] and
those generated within the gut [26]. Erythrocytes contain the
protein alpha-synuclein (Asyn) which is very readily glycated by
MG. Aggregated forms of Asyn (called Lewy bodies) are found in
the PD brain [27]. As MG can induce eryptosis (red cell lysis)
[28], one wonders whether erythrocyte Asyn could contribute to
Lewy body formation, especially as there is a strong association
between type-2 diabetes and neurodegenerative conditions e.g.
AD and PD [29,30]. It is also interesting to note that the
ADTIQ (1-acetyl-6,7-dihydroxyl-1,2,3,4-
tetrahydroisoquinoline) has been detected in the brains of type-2
diabetics and PD patients [31]: ADTIQ is the spontaneous
product of the reaction between dopamine and MG [32], an
observation which reinforces the notion that increased levels of
MG contribute to both these pathologies.

neurotoxin

During construction of this review, new evidence emerged
which supports the proposal that changes in erythrocytic
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metabolism accompany neurodegenerative condition; Lv et al.
reported that erythrocytes from AD patients possessed decreased
glyoxalase activity, whilst papers by Graham et al. and Tian et al.
showed that erythrocytes from dementia subjects contained
increased levels of aggregated alpha-synuclein, observations also
possibly related to the deceased proteasome activity also
reported by Lv et al [4,33,34]. Furthermore, MG has been
recently reported to be causal towards brain senescence in an
aging mouse model [35].

Triose-phosphate isomerase, aging and the brain

As noted above, studies have shown that AD is accompanied by
glycolytic dysfunction [14,15] coupled with increased MG
generation [35-39]. Furthermore it has recently been reported
that brain senescence in a mouse aging model is caused by
of MG [40]. Theoretically, both these
observations may derive from either erythrocytic MG
[4,33,34,39] or/and, the inactivation of astrocyte TPI and
glyceraldehyde-3-phosphate dehydrogenase activities, perhaps

elevated levels

driven by not only astrocytic excessive glycolysis but also due to
the effects of MG released from erythrocytes.

It is very likely that TPI is present in all cells which undertake
either glycolysis or gluconeogenesis. Neurons are not particularly
glycolytic as they receive their energy via input of lactate
supplied by astrocytes in which glycolysis readily occurs; altered
forms of TPI have been detected in aged cells and tissues [40-42],
including the brain. There is evidence for the occurrence of
asparagine deamidation in human brains [43] and dysfunctional
TPI has been detected in the brains of AD patients [44].
Although there are no reports on whether TPl deamidation
occurs in the aged human brain, there is evidence suggesting
that upregulation of TPI enhances longevity in mice [45]; TPI
activity in a senescence-accelerate mouse strain (SAMP3) brain
and liver was found to be substantially lower than in the
“normal” SAMR mice, while acupuncture improved organism
longevity and enhanced tissue TPI activity [45]. Furthermore,
treatment of senescent human fibroblasts with gamma-
tocotrienol not only increased in witro proliferation but also
increased TPI expression [46]. While explanation of the
beneficial effects resulting from enhanced TPI expression may
reside in the possibility outlined above (i.e. decreased MG
generation), it has been pointed out that TPI may perform
undefined non-metabolic “moonlighting” activities [47]. For
example, it is possible that TPI could be involved in cell cycle
regulation [48], thereby enhancing organism longevity and stress
responses, at least in Drosphila [49]. As cell cycle dysregulation

has been described in Alzheimer’s disease [50], it cannot be
necessarily assumed that the consequences of TPI decline in the
brain can all be explained in terms of MG accumulation and
glycation-related phenomena [51]. Nevertheless there is
substantial evidence from animal and human studies showing
that TPI dysfunction provokes neurological dysfunction,
possibly related in part to enhanced MG-induced protein
glycation [52,53]. It has, however, also been suggested that the
phenotypic effects of lowered TPI might involve a response to
protein miss-folding and its consequences [47]. Additionally it
should also be noted that enhancement of MG formation has
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been shown to promote a hormetic response, thereby improving

cellular ability to deal with toxic dicarbonyls. [54,55].

Enhanced protein glycation is frequently associated with age-
related neurodegeneration such as AD and PD [9-12,17,18], and
the two major proteins which accumulate in the AD brain, beta-
amyloid and aggregated Tau, can profoundly affect TPI function.
Beta-amyloid induces nitration of TPl and decreases the
enzyme’s activity and thereby provokes MG accumulation [56].
In contrast, the Tau protein is normally protective towards TPI,
but this activity is lost following Tau hyperphosphorylation and
aggregation [57]. Both observations seem to point to a pivotal
role for TPI in neurodegenerative conditions.

It has recently been reported that a phenylpyrrole fungicide,
frequently used on crops worldwide, induces MG production via
the agent’s inhibitory effects on TPI [58]. Such a finding may
help to explain the apparent association between pesticide
exposure and the increased occurrence of neurodegenerative
conditions such as PD, and obviously has serious implications
for the food industry.

It is likely that enhanced protein glycation plays a major role in
PD. The protein Asyn is present in most cells including
erythrocytes, and in aggregated form it is a major component of
Lewy bodies in the PD brain, and it has recently been shown
that glycation of Asyn provokes its binding to and inhibition of
glyceraldehyde-3-phosphate dehydrogenase, thereby provoking
G3P accumulation and increasing the potential for enhanced

MG formation [59)].

Carnosine, aging and age-related dysfunction

Carnosine (beta-alanyl-L-histidine) is synthesized by many
animals (mammals, birds and fish) and is mainly located in
muscle tissue and the brain, especially in the olfactory lobe of
mammals [7,60-62]. It is likely that carnosine is present in most
carnivorous diets; there is only one report of carnosine
occurring in plant tissue (gourd skin) [63]. Originally discovered
over 100 years ago, many properties have been ascribed to the
dipeptide. These included wound healing agent [64,65],
immune-stimulant [66,67] and anti-aging agent [68,69], while at
the biochemical level, pH buffering [70,71], anti-oxidant [72,73]
and anti-glycating [74-77] activities have been detected. More
recently, beneficial effects of the dipeptide on lung disease
[78,79], various brain disorders [80-82] and a variety of
conditions related to diabetes such as diabetic kidney disease
[83-85], cardiovascular disease [86,87] and stroke [88,89] have
been observed. Antiviral activity towards Denge and Zika
viruses has also been detected. [90]. Toxicity towards tumour cell
growth was first observed some decades ago [91,92] and whilst it
appears that the dipeptide’s effect is associated with decreased
glycolytic ATP generation [93,94], there is no agreement on the
precise mechanisms responsible [95-97]. Another recent finding
is that carnosine induces intestinal cells to release exosomes that
activate neuronal cells [98].

As outlined above, it is likely that MG formation and
detoxification can strongly influence age-related macromolecular
modification. Although model systems have demonstrated that
carnosine can react with MG [99], there is little in vivo evidence
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for occurrence of the putative reaction products i.e. carnosine-
MG adducts. In fact, the major carnosine-adduct found in
human urine is that formed between the dipeptide and acrolein
[100-102]. However, acrolein is usually thought to be a product
of lipid oxidative damage [103]. Given that carnosine seems to
protect against the consequence of excessive carbohydrate
catabolism, the lipid origin of acrolein in the carnosine-acrolein
adduct may therefore be questionable. As the structures of
acrolein and MG are quite similar, the theoretical conversion of
MG into acrolein could occur in two steps, first a reduction
generating lactaldehyde followed by a dehydration to generate
acrolein. Hence one has to consider whether MG is a source of
acrolein in wvivo. In support of this proposition, a recent study
using glyoxalase-knockout mouse cells has demonstrated the
presence of an additional/alternative route by which MG is
detoxified to lactaldehyde using uncharacterized aldehyde/keto
reductases [104]. The conversion of lactaldehyde to acrolein has
yet to be demonstrated, however. Nevertheless should this route
of MG detoxification be established, it would have the
advantage of ensuring the elimination of two molecules of MG
per carnosine, as the carnosine-acrolein adduct is a cyclic
structure formed by two acrolein molecules per carnosine [102].

It has been shown that there is a strong association between
schizophrenia and elevated levels of plasma protein glycation
(i.e. carbonyl stress) mediated by triose-phosphates [105]. There
are reports showing that dietary supplementation with carnosine
can exert beneficial effects towards human schizophrenics
[106,107]. Thus, one is tempted to speculate that carnosine’s
apparent beneficial effects towards schizophrenia may reside at
least in part from the dipeptide’s anti-glycating activity, especially
as it has recently been reported that schizophrenia is associated
with glial cell glycolytic dysfunction, which produces an
advanced aging phenotype and accelerated aging [108].

Carnosine and energy metabolism

The many beneficial effects of carnosine (some of which
outlined above) suggest that the dipeptide is pluripotent in its
actions. It not only can protect cells against deleterious agents
such MG, acrolein and malondialdehyde, but it may directly
interfere with glycolysis. However, the dipeptide’s effects can
vary depending on cell metabolism. For example, carnosine’s
effect on yeast cells varied according to the growth conditions;
the dipeptide was somewhat inhibitory to cells growing on
glucose as sole carbon source i.e. where glycolysis was the major
ATP generating pathway, whereas in cells growing aerobically on
glycerol, i.e. where mitochondria provided ATP generation, the
dipeptide stimulated growth and exerted no inhibitory effects
on cell proliferation [109]. Thus it appears from these yeast
studies that carnosine can exert suppressive activity towards
glycolysis.

Studies using transformed cells also show that carnosine exerts
inhibitory effects upon glycolytic ATP synthesis [93,96].
However, the mechanism(s) by which these effects are mediated
remains uncertain: there are at least three possibilities. First, it is
possibility that carnosine stimulates the enzyme fructose-1,6-
bisphosphatase (FBP). FBP is regarded as a gluconeogenic as it
converts fructose-1,6-bisphosphate into fructose-6-phosphate
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(F6P), but does not generate ATP. Many years ago, it was shown
that carnosine and histidine could activate FBP by binding to
zinc ions which otherwise inhibit FBP activity [110]. Thus upon
FBP activation in yeast or tumor cells, the presence of the
dipeptide would provoke a futile ATP-consuming cycle in which
fructose-6-phosphate is phosphorylated using ATP, yielding
fructose-1,6-diphosphate which then dephosphorylated by FBP
back to F6P and inorganic phosphate. A second possibility is
that carnosine exerts effects upon the regulatory complex
mTOR. mTOR activity is suppressed by the immune-suppressor
rapamycin which results in decreased glycolytic activity and up-
regulation of mitochondrial ATP generation [111]. Rapamycin
[112] and carnosine [113] have both been shown to induce
similar anti-aging effects such as delaying senescence in cultured
human fibroblasts and stimulating proteolysis of longlived
proteins in replicative senescent cells, observations suggesting
that carnosine may possess rapamycin-like properties [111].
However, carnosine’s putative rapamycin-like activity has been
questioned in studies using various glioblastoma cells which are
unresponsive to rapamycin but whose growth is still inhibited by
carnosine [114]. The third possible mechanistic route of
carnosine’s inhibitory effects of glycolysis involves upregulation
of the enzyme pyruvate dehydrogenase kinase-4 (PDK4) [115],
whose activity decreases glycolysis. It is interesting to note that
aging in cultured mouse oocytes is delayed by the polyamine
putrecine which also upregulates PDK4 expression [116];
carnosine has been shown to delay aging in cultured human
fibroblasts [117], although whether this is also accompanied by
increased PDK4 has yet to be explored. Thus one may conclude
that carnosine’s anti-aging activity might explained by its anti-
glycolytic effects mediated by upregulation of PDK4. However,
the various effects on glycolysis induced by the presence of
carnosine may not be necessarily mutually exclusive; hence it is
suggested that, as carnosine appears to be pluripotent in terms
of its effects on glycolysis, any one or more of the possible
mechanisms outlined above could be responsible for its
suppressive effects on glycolysis.

Carnosine and erythrocytes

There has only been one report of the occurrence of carnosine
in human erythrocytes [118]; interestingly, carnosine was shown
to be enriched (up to ten-fold) within erythrocytes compared to
serum, whereas acetyl-carnosine (unsusceptible to carnosinase
attack) was found predominantly in serum. Although these
findings have yet to be confirmed, it was also found that when
erythrocytes and sera from young (29 years old * 4) and elderly
(81 years £ 7) human subjects were compared, both carnosine
and acetyl-carnosine levels were substantially lower in the elderly
individuals. The origin of red cell carnosine has yet to be
studied; presumably erythrocytic carnosine is synthesized during
red cell development in the bone marrow. Hence it is
conceivable that raised levels of erythrocyte carnosine could be
achieved by dietary supplementation with beta-alanine (or
carnosine as a source of beta-alanine), although full benefit
might be not be achievable until complete red cell replacement
is achieved (i.e. around 120 days, the maximum lifespan of
human erythrocytes.). It would also be interesting to determine
if high GI diets affect erythrocyte carnosine levels. Whether
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carnosine-loaded erythrocytes supply the dipeptide to the
tissues, including the brain, has yet to be investigated.

Carnosine and neurodegeneration

Theoretically carnosine could exert beneficial effects in brain
tissue by (i) decreasing glycolytic flux in astrocytes and glia, (ii)
directly facilitating elimination of glycating agents such as MG,
or (iii) indirectly, by decreasing erythrocyte-generated MG
and/or glycated proteins such as Asyn. Carnosine has been
previously proposed as potentially therapeutic towards both AD
and PD [119,120], especially if administered nasally to avoid
serum carnosinase activity [79]. Recent findings support these
suggestions [121,122], including the potential efficacy of the
nasal route [123]. It is also interesting to note that the olfactory
lobe is enriched in carnosine and loss of a sense of smell is a
frequent early symptom of neurodegeneration [124], which, at
least superficially, supports the notion that carnosine might play
a role in controlling aspects of neurological function[125-127].

CONCLUSION

It is clear that aging onset can be delayed if excessive glycolytic
activity is suppressed to a minimum. Biochemically, under such
a circumstance, generation of deleterious agents such as MG
and its reaction products (AGEs) would be reduced to a
minimum. It is likely that the current “Western” diet (almost
permanent high GI carbohydrate input) may turn erythrocytes
into a major source of systemic of MG and protein-AGEs,
thereby accelerating aging onset and agerelated dysfunction,
partly as a result of the activity-induced change in the primary
structure of red cell TPL. Indeed recent studies support the
notion that enhanced erythrocytic MG generation plays a role in
certain age-related neurodegenerative conditions.

Carnosine’s ability to suppress glycolysis may help to explain its
apparent beneficial effects towards cellular aging and tumor cell
growth. It is possible that carnosine also exerts anti-glycating
activity by scavenging reactive carbonyls such as MG. Indeed
carnosine-acrolein adducts can be detected in human urine,
which suggest that the dipeptide could be beneficial towards
human aging where AGE formation occurs, especially as
carnosine is far less toxic than other anti-glycating agents such as
aminoguanidine. Thus, increasing synthesis or dietary input of
carnosine could be beneficial by suppressing glycation-related,
age-related, phenomena.

Green vegetables are, of course, another source of naturally-
occurring anti-glycating agents, due to the synthesis of MG
precursors during photosynthesis, against which plants must
protect themselves. Indeed there are multiple claims in the
literature suggesting that plant preparations possess anti-
glycating activity. It would be interesting to determine whether
increased intake of vegetable-derived anti-glycating agents affects
erythrocyte carnosine levels and the excretion of carnosine-
acrolein adducts.
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