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Introduction
Somewhere in the range of 20 years back, Nipah virus (NiV) 

emerged and was shown to be a previously obscured paramyxovirus, 
now being classified as one of the 5 members within the Henipavirus 
genus. The single-stranded negative-sense RNA genome of NiV 
contains only six genes corresponding to six structural genes; however, 
it can exert an unusual broad species tropism [1]. The viruses are highly 
pathogenic to several vertebrate animal groups including the humans 
and have been given biosecurity level 4 status [2]. The manifestation 
of pathogenicity of NiV infection appears to be essentially due to 
endothelial damage, multinucleated syncytia and vasculitis-induced 
thrombosis, ischemia and micro infraction in the central nervous 
system (CNS), allowing the virus to overcome the blood-brain-barrier 
(BBB) and subsequently causes infection of neurons and glial cells in 
the brain parenchyma [3,4]. 

Several fruit bats of the Pteropodidae family have been identified 
as natural reservoirs of NiV and pigs can serve as an amplifying host 
[5]. Furthermore, there are various other mammalian species that are 
vulnerable to NiV disease [6-8]. NiV has been isolated from the brain 
and spinal fluid of infected personnel and bat urine and partially-eaten 
fruit in Malaysia [9]. 

NiV outbreaks have occurred on a regular basis in Bangladesh 
and India, with human case fatality rates approaching 75% [10-12]. 
Although there is a lack of wholeness of data regarding the infection 
rate, till March, 2012 an aggregate of 209 human instances Bangladesh 
were accounted for; 161 (77%) of them died [11]. Since the first NiV 
outbreak in 2001, the virus caused outbreaks for at least 11 times in 
Bangladesh during the period 2001–2011 [11,12]. Contact with an 
infected cow, drinking fresh date.

Palm sap and men-to-men transmission were reported to be 
responsible for the outbreaks [11,13-15]. Viral isolates collected during 
the outbreaks in Bangladesh showed that diverse strains were involved 

Abstract
Nipah virus (NiV), a newly emergent zoonotic paramyxovirus, has caused several outbreaks in humans and 

associated with severe encephalitic diseases. Till these days, neither vaccines nor drugs with optimal appeasement 
against the virus are available. The attachment glycoprotein (NiV-G) on the surface of the virus is an important 
virulent factor and a promising antiviral target. To identify novel inhibitors of NiV-G using computer aided virtual 
screening of NCI diversity set 2 and 20,000 commercially available drug-like compounds in the ZINC database. 
Structure based molecular docking studies using the crystal structure of the NiV-G were performed to virtually screen 
for novel inhibitors of NiV-G and 4 potential compounds with potential ability to inhibit the NiV-G by competing with 
Ephrin binding site and prevent NiV encephalitis by blocking the Ephrin recognition zone at the peripheral site were 
found.

[16]. Viral infections caused by NiV which are occurring in Bangladesh 
potentially provide insight into broader clinical manifestations [17]. 

Till now, no effective treatment for Nipah virus infection has 
been reported. Chong et al., mentioned that, nausea, vomiting, and 
convulsions may get alleviated by Ribavirin [18]. All the existing 
treatment strategies for Nipah Virus infection are generally focused on 
managing fever and the neurological symptoms and for some severe 
cases, by providing ventilation support. 

Novel antiviral strategy development against an emerging virus 
like the Nipah virus relies most on the better understanding of the 
molecular mechanism of their entry into the host cell [19]. The cell-cell 
adhesion mediated by glycoprotein is an important virulent factor for 
the virus to transmit directly from an infected cell to an uninfected cell 
in the vicinity and it significantly induces the cytological pathogenicity 
of a NiV infection [20]. The attachment glycoprotein (G) protein 
is composed of 602 amino acid residues and classified as a type II 
membrane glycoprotein which primarily functions as a receptor-
binding protein [21]. This G protein is accountable for the viral 
attachment to sialic acid-containing host cell receptors and plays the 
most significant role in the replication process of the viral nucleic acid 
inside the host cell [22]. Hence, G protein possess a chief role in the 
process of replication of paramyxo virus, and of course can be taken 
as the primary target for neutralizing antibodies as well as potential 
inhibitory agents targeting the virus [23]. The G proteins of Henipa 
virus interacts with ephrin-B2 and ephrin-B3, the only two members 
of ephrin family, in a very specific manner and the molecular basis of 
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that points out how they intervene in a unique fashion cell adhesion 
as well as the incitement of the fusion of the membrane during viral 
infection process [24]. The crystal structures of NiV-G have already 
been determined and suggestions that the interaction between NiV-G 
and ephrin can be effectively targeted to shatter the viral entry are 
available [25,26]. Essentially, this provides the base for designing the 
structure-based antiviral drug.

Computer-aided drug design (CADD) has become a very important 
part of the rational drug design process now a day. This involves 
extensive computer modeling methods to reduce the costs and speed 
up the drug developing process [26]. Designing a drug is not a talk of 
overnight- it is a very sensitive, time-consuming, costly, sophisticated, 
and inefficient process. Collier et al. estimated that, the average cost 
on a new drug development is about US$ 1.3-1.7 billion and it takes 
about eight to ten years [27]. CADD helps to find out potential 
drug by its speed and efficiency. High-throughput robotic screening 
methods accelerate this process, but still, this is a time-consuming 
process as a great number of compounds must be trialed [28]. By the 
use structure-based drug designing process, it is hoped that at least a 
smaller number of compounds will be found active against the target 
and that very small number of compounds are then taken for trial. The 
availability of the 3D structure of the targeted macromolecule, usually 
by X-ray crystallography or nuclear magnetic resonance (NMR) or 
in few instances, homology models, enhances the procedure [29]. In 
general, the more precise the 3D structure and its information are 
the more accurate predictive results will be found in the context of 
drug discovery, importance of high-throughput docking has getting 
elevation every day [30,31]. Though there are technical challenges in 
reliably predicting the mode of binding of a molecule to a target and 
making comparison among the binding affinities to other compounds, 
molecular docking campaigns have produced significant upliftment of 
hit rate compared to random screening in a commencing number of 
cases [32-35]. In this particular study, we have incorporated structure 
based virtual screening method to search out the potential drug like 
compounds for the treatment against NiV-encephalitis targeting the 
NiV attachment glycoproteins (Niv-G). 

Materials and Methods
Preparation of G-glycoprotein structure

The 3D crystal structure of G-glycoprotein of NiV (PDB ID: 3D11) 
in complex with N-glycosylation site was retrieved from the Protein 
Data Bank [25]. All the water molecules and iodine ions were removed 
to make the structure of G-glycoprotein of NiV prepared for structure 
based virtual screening as well as molecular docking processes. 

Active site prediction 

Binding site of the G-glycoprotein was determined by the aid of 
CASTp protein prediction server [36]. As determined by CASTp using 
a 1.4 Ǻ radius probe, the volume of the internal cavity surface of the 
ligand binding sites was computed. 

Ligand preparation for virtual screening

Compound input libraries of 20,000 drug like small compounds 
from about 3,50,000 drug-like compounds, based on Lipinski rule of 
five from ZINC database and 1592 compounds with a rich structural 
as well as pharmacophore diversity, were chosen as the molecules in 
demand for virtual screening. 

The NCI diversity set-II is a compilation of about 1592 compounds 

that are structurally delegate of a wide range of pharmacophores. The 
‘‘Diversity set’’ was attained from almost 140,000 compounds accessible 
on plates and from these 71,756 compounds were then reduced to the 
final set using the Chem-X program [37]. The eliminated compounds 
were reduced as at least 1 gr of the material was not available. The 
pharmacophores for the current structure were weighted to all other 
pharmacophores found in structures already accepted in to the diverse 
subset. If the current structure had more than a predetermined number 
of new pharmacophores, it was kept to the diverse subset and by this 
process we could select 1592 compounds in the diversity data set. As the 
selection procedure was order dependent, the order was randomized. 

Virtual screening with Auto dock vina

For this particular study, we used Auto Dock Vina as the primary 
docking program for virtual screening [38]. We prepared the 3D11 
pdbqt file and determined grid box sizes using Auto dock Tools version 
4.2 (The Scripps Research Institute, La Jolla, USA). Auto dock Vina is 
reported for its accuracy and speed, which is far faster than its ancestor 
program, Auto dock4 [39]. However, we prepared the input pdbqt file 
for 3D11 and set the size and the center of the grid box by employing 
Auto dock Tools. The 3D11 structure was included with the Kollman 
charges and polar hydrogen atoms. Over and above, we set the grid box 
sizes at 60, 60, and 60 Å and the spacing between grid points at 0.375 
angstroms. The predicted binding strength (kcal/mol), which fingers at 
how strongly a ligand binds to the receptor, is computed depending on 
the scoring function used in Auto Dock Vina. The more the negative 
value of binding affinity is, the stronger the affinity is. 

Pursuant that, the scoring function of the software Auto Dock Vina 
is divided into 2 portions: 

i) Conformation-dependent portion, which can be regarded as a 
sum of intramolecular and intermolecular contributions, and 

ii) Conformation-independent portion, which relies on the 
number of rotatory bonds between heavy atoms in the ligand. 

Contributions of each of the portions are given an unidentical 
weighted value in the scoring function of the Auto Dock Vina [39]. The 
contributions include the steric, hydrophobic, hydrogen bonding and 
number of rotatory bonds

ADMET properties prediction

The physico-chemical properties such as log P value, H-bond 
donors, H-bond acceptors, molecular weight and rotational bonds, 
for ligands obtained from NCI diversity set-II are calculated using the 
ADME/Tox filter server and presented in Table 1 [40].

The top hits from each screen were initially filtered for drug likeness 
by their adherence to Lipinski’s “rule of fives” [41]. It is recommended 
that compounds should conform to two or more of these rules and 
we only considered compounds conforming all rules in this study, 
i.e., having no more than five hydrogen bond donors, no more than 
10 hydrogen bond acceptors, a molecular weight under 500 gr/mol, 

HBD 0-5
HBA 0-10

Log P 0-5
Molecular weight (M.wt) 160-500

TSPA 20-140 Å2
Number of rotable bond 0-10

Table 1: Physicochemical parameter used for filtering ZINC database. 
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and a partition coefficient (log P) under 5. Compounds were filtered 
after rather than prior to docking to prevent premature exclusion of 
compounds that do not meet this criterion. The remaining hits were 
further filtered based on clustering criteria in Auto Dock: we only 
consider a compound among the top hits if the most populated cluster 
included at least 25% of all docked conformations. Receptor ligand 
interactions, including hydrogen-bonding interactions and molecular 
surfaces, were calculated in Auto Dock Tools version 4.2 [42,43]. 

Molecular docking

To carry out the further docking simulation of the top-ranking 
compound resulted by Auto Dock Vina, we used the Auto Dock 
4.2 suite as molecular-docking tool [39]. It is suitable software for 
performing automated docking of ligands to their macromolecular 
receptors. Typically, the ligands are substrates or drug candidates and 
the macromolecule is a protein of known three dimensional structures. 
In this docking simulation, we used rigid docking protocols. In which 
the target protein G-glycoprotein and the ligand molecule both were 
kept as rigid. The Graphical User Interface program “Auto dock Tools” 
was used to prepare, run, and analyze the docking simulations. Kollman 
united atom charges, solvation parameters and polar hydrogens were 
added into the receptor PDB file for the preparation of protein in 
docking simulation. Auto dock requires pre-calculated grid maps, one 
for each atom type; present in the ligand being docked and its stores 
the potential energy arising from the interaction with macromolecule. 
This grid must surround the region of interest in the macromolecule. 
In the present study, the binding site was selected based on the active 
site component and also the Ephrin binding site of the G-glycoprotein. 
Both the active site and Ephrin binding site residues are covered as 
grid box. The grid box size was set at 60, 60, and 60 Å (x, y, and z), 
though it was changed depending on the ligand size. Auto Grid 4.2 
Program, supplied with Auto dock 4.2 was used to produce grid maps. 
The spacing between grid points was 0.375 angstroms. PyMol (De Lano 
Scientific LLC, USA) and DS Visualizer (Accelrys, Inc., USA) were 
employed to visualize and modify the receptor and ligand structures.

Results
Binding pocket of NiV-G

The crystal structure (PDB ID: 3D11) of the Nipah G Attachment 
Glycoprotein (NiV-G) of nipah virus complexed with ephrin-B3 at a 
resolution of 2.2 Å was retrieved from PDB database, which was then 
employed to search for potential inhibitors. As the binding pocket was 
calculated by CASTp the amino acid residues surrounding the binding 
pockets are ASP219, PRO220, PRO276, ASN277, VAL279, TYR280, 
HIS281, CYS282, TYR351, GLY352, PRO353, PRO448, PHE458, 
GLY489, GLN490, GLY506, VAL507, TYR508, LYS560, GLY559. 
Thus, all these residues are predicted as important residues for docking 
and later used to create grid during the docking study. The predicted 
binding pocket has a volume of 807.2 Å and area of 1617.5. The residues 
constitute the binding pocket of NiV-G are shown in Figure 1.

Virtual screening for potential ligands

Prior to the docking study, all considered ligands were subjected to 
virtual screening to identify promising ligands based on their affinity 
score obtained from Auto dock Vina. A total of 21592 compounds 
of NCI diversity set II and ZINC database were screened for this 
purpose. We selected top 64 and 10 compounds out of 1592 and 20000 
compounds from NCI diversity set II and ZINC database, respectively 
according to their binding affinity of the molecule to the G-glycoprotein 
of Nipah virus measured by Auto dock Vina. All selected ligands were 

then checked through ADMET/Tox filter to ensure their compatibility 
as a drug considering several structural features. All those criterions 
we used to select druglike molecules are having no more than five 
hydrogen bond donors, no more than 10 hydrogen bond acceptors, a 
molecular weight under 500 g/mol, and a partition coefficient (log P 
value) under 5 which are also known as Lipinski’s rule of five. Only 
19 compounds of 64 NCI diversity set II were passed through the 
ADMET test. A brief analysis of top binders, however, revealed that 
most compounds that failed the Lipinski rules were unlikely to be 
drug candidates. Although some compounds that failed the Lipinski 
rules also had good docking scores, this cut off criterion was imposed 
to focus the scope of our search to the more promising compounds. 
The top 19 and top 10 compounds of NCI diversity set II and ZINC 
database are given to the Tables 2 and 3 respectively.

Selection of positive control and validation of the docking

In molecular docking, the size and center of the coordinates of the 
grid box need to be validated to ensure that ligands bind to the binding 
pocket in the correct conformation. Our aim of this work is to block 
the binding of the G-glycoprotein to the Ephrin receptor molecule. So, 
the Ephrin binding site was utilized as the grid box center for molecular 
docking studies of ligands in search of potential inhibitors. As there is 
no any natural ligand bound to the active site of the G-glycoprotein, 
we considered the Rivabirin as control molecule. Heng-Thay et al. 
suggested that Rivabirin can be a potential drug for the treatment of 
acute Nipah encephalitis [14]. We docked the Rivabirin into the active 
site of the protein to analyze the binding pattern of the Rivabirin. The 
detailed view of docking of Rivabirin to the active site is shown in 
Figure 2A and B which exhibited molecular docking with ΔG value 
of -6.36 (kcal/mol). Rivabirin forms 7 hydrogen bonds and several 
hydrophobic interactions with residues inside the active site. Rivairin 
has been found to form seven hydrogen bonds among oxygen O18 of 
Rivabirin and the backbone hydrogen of Gly352 (bond length is 2.25 
Å), the H28 and the backbone oxygen of Cys282 (2.08 Å), the O3 of and 
the backbone hydrogen of Tyr508 (2.18 Å), the H27 and the backbone 
oxygen of Pro220 (1.80 Å), the O21 and the side chain hydrogen of 

Figure 1: Wireframe display of a 3D11; Green balls represents amino acids 
residue around the active site.
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His281 (2.14 Å) and O and O15 and the side chain hydrogen of Lys560 
(2.04 Å and 2.14 Å). In addition to hydrogen bonds, Val507, Tyr351, 
Phe458, Pro441, Pro353 and Ile562 were involved in the van der Walls 
interactions which further stabilize the Rivabirin binding strength. 

All the amino acid residues which involved in molecular interaction 
are shown in wire frame drawing and colored by atom types in which 
hydrogen is colored gray, carbon green, oxygen red, nitrogen blue, and 
sulfur yellow Residueswith hydrophobic contracts with the ligands are 
leveled in black. (B) Binding of Ribavirin into the active site pocket of 
NiV-G.

Docking of the top four discovered NSC ligands

After the ADMET test we found that the top four compounds which 
have the strongest affinities for the active site of the G-glycoprotein 
were NSC308835, NSC37553, NSC227186 and NSC5157 each with a 
binding affinity of -10.6 kcal/mol, -10.1 kcal/mol, -10.0 Kcal/mol and 
-9.5 Kcal/mol respectively. We performed further analysis of these top 
four compounds on target protein to evaluate these compounds as drug. 
Binding of 9-dioxo-8-azaspiro[4.4]nonfan-8-yl)-3-methylphenyl]-
2-methylphenyl]-8azaspiro[4.4]nonane-7,9-dione (NSC308835) and 
G-glycoprotein is shown in Figure 3A. NSC308835 formed three 
hydrogen bonds with in the active site of the of the target protein. It 
formed one hydrogen bond at O2 from side chain hydrogen of Lys560 
(bond length is 2.13 Å), one hydrogen bond at O1 from side chain 
oxygen of Asp219 (bond length is 2.8 Å) and another hydrogen bond at 

O4 from side chain oxygen of Gly506 (bond length is 2.5 Å). In addition, 
several hydrophobic interactions are formed between NSC308835 
with the hydrophobic side chain of Tyr351, Pro441, Phe458, His281, 
Asp219, Gln559 and Ala532. The predicted Ki value for NSC308835 
is 0.033 (Table 1) which shows the lowest Ki value. Binding of 1-N, 
4-N-bis(3-phenylphenyl) piperazine-1,4-dicarboxamide (NSC37553) 
and G-glycoprotein is shown on Figure 3B. NSC37553 formed two 
hydrogen bonds within the active site residues of the target protein. It 
forms one hydrogen bond at O1 from side chain hydrogen of Lys560 
(bond length is 2.12 Å) and one hydrogen bond at O2 from backbone 
oxygen of Gly506 (bond length is 3.4 Å). Hydrophobic interactions are 
formed between NSC37553 with the hydrophobic side chain of Gln490, 
Val507, Tyr508, Phe458, Pro441, Asp219, Gln559 and His281. Binding 
of (4’-hydroxy[1,1’-biphenyl]-4-yl)(phenyl)methanone (NSC400770) 
and G-glycoprotein is shown on Figure 3C. NSC400770 formed two 
hydrogen bonds, in which one hydrogen bond at O1 from the side chain 
hydrogen of His281 (bond length is 2.20 Å) and another hydrogen 
bond at side chain H14 of Gly5.6 from O of the ligand molecule (bond 
length is 3.00 Å). And the binding of N-(4, 7-dihydroxy-8-methyl-2-
oxo-2H-chromen-3-yl)-2, 2-dimethyl-3,4-dihydro-2H-1-benzopyran-
6-carboxamide (NSC5157) with G-glycoprotein is shown in Figure 3D 
and E. NSC5157 formed two hydrogen bonds with the active site of the 
target protein. It forms one hydrogen bond at O5 from the side chain 
hydrogen of His281 (bond length is 2.22 Å) and one hydrogen bond at 
O4 form backbone nitrogen of Tyr508 (bond length is 2.30 Å). In this 
study, we also determined the binding affinity between protein and its 

No NSC Compound name Moleculr Weight 
(g/mol)

Auto dock Vina 
Score (Kcal/mol) Predited Ki (µM)

1 308835 9-dioxo-8-azaspiro[4.4]nonan-8-yl)-3-methylphenyl]-2-methylphenyl]-8-
azaspiro[4.4]nonane-7,9-dione 484.6 -10.2 0.033

2 37553 1-N,4-N-bis(3-phenylphenyl)piperazine-1,4-dicarboxamide 476.6 -10.1 0.039
3 400770 (4'-hydroxy[1,1'-biphenyl]-4-yl)(phenyl)methanone 274.3 -9.8 0.065

4 5157 N-(4,7-dihydroxy-8-methyl-2-oxo-2H-chromen-3-yl)-2,2-dimethyl-3,4-dihydro-
2H-1-benzopyran-6-carboxamide 395.4 -9.5 1.08

5 97920
dispiro[2,4diazatricyclo[7.3.1.0^{5,13}]tridecane-3,1'-
cyclohexane-4',3''-[2,4] diazatricyclo[7.3.1.0^{5,13}]tridecane]- 
1(12),1''(12''),5,5'',7,7'',9(13),9''(13''),10,10''-decaene

392.5 -9.5 1.08

6 80997
1-(1,11-dihydroxy-2,5,10a,12a-tetramethyl-7-phenyl-1,2,3, 3a,3b,7,10,10a, 
10b,11,12,12a-dodecahydrocyclopenta [5,6]naphtho[1,2-f]indazol-1-yl)
ethanone

472.6 -9.4 1.2

7 670283 2,2'-spirobi[3,6,7,8-tetrahydro-1H-cyclopenta[g]naphthalene]-5,5'-dione 356.5 -9.4 1.2
8 345845 3-(4,5-dimethylbenzo[h][1,6]naphthyridin-2-yl)-2-methyl-4-quinolinylamine 361.9 -9.4 1.2

9 127133 2'-(((6-hydroxy-3-phenanthridinyl)amino) carbonyl)[1,1'- biphenyl]-2-carboxylic 
acid 433.4 -9.3 1.52

10 332670 2-(1H-phenanthro[9,10-d]imidazol-2-yl)phenol 310.4 -9.3 1.52

11 67436 4-chloro-1-N,3-N-bis[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]benzene-1,3 
dicarboxamide 489 -9.3 1.52

12 324623 3-(2-pyridinyl)-1-(3-pyridinylcarbonyl)-4H-quinolizin-4-one 327.3 -9.2 1.8

13 37641
4b-fluoro-6b-glycoloyl-5-hydroxy-4a,6a,8-trimethyl-8-phenyl-4a, 
4b,5,6,6a,6b,9a,10, 10a,10b,11,12-dodecahydro-2H-naphtho[2',1':4,5]
indeno[1,2-d][1,3]dioxol-2-one

496.6 -9.2 1.8

14 60339 2-chloro-N1,N4-bis(4-(4,5-dihydro-1H-imidazol-2-yl)phenyl)terephthalamide 487 -9 2.5
15 117268 4-(2-(4-chlorophenyl)-4,6-diimino-1,3,5-triazinan-1-yl)benzenesulfonamide 378.8 -9  

16 59620
4a,6a,9-trimethyl-6,7-dioxo-2,3,4,4a, 4b,5,6, 6a, 
6b,7,10,10a,11,11a,11b,12,13,13a-octadecah ydro-1H-indeno[2,1-a]
phenanthren-2-yl acetate

412.6 -8.9 2.9

17 26258 2-isopropenyl-8,9-dimethoxy-1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]
chromen-6(6aH)-one 394.9 -8.9 2.9

18 26692 4,5-bis(4-methoxyphenyl)-1,5-dihydro-2H-imidazol-2-one 296.3 -8.9  
19 379651 2-(2-furyl)-5-phenylpyrazolo[1,5-a]pyrimidin-7(4H)-one 277.3 -8.8 3.5

Table 2: NSC Database ID number, IUPAC name, molecular weight, binding energy and Ki value of the top scored ligands with the G-glycoprotein of Nipah Virus using 
docking software AutoDock Vina. 
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No ZINC ID Compound
Structure Compound Name

Moleculr  
weight
(g/mol)

AutoDock
Vina Score
(Kcal/mol)

1. ZINC00707572

1-acetyl-17-[3-(trifluoromethyl) 
phenyl]-17-azapentacyclo 

[6.6.5.0~2,7~.0~9,14~.0~15,19~]
nonadeca-2,4,6,9,11,13-hexaene-16,18-

dione

461.439 -10.9

2.

ZINC01019934

(5Z)-5-[[3-(1-benzofuran-2-yl)-1-
phenylpyrazol-4-yl]methylidene]-2-

[(2R,6R)-2,6-dimethylmor pholin-4-yl]-
1,3-thiazol-4-one

484.581 -10.8

3. ZINC00827822

2-methyl-5-[5-(3-nitrophenoxy)-1,3-
dioxoisoindol-2-yl]isoindole-1,3-dione

443.371 -10.6

4. ZINC00654610

(6S,9R)-5-acetyl-6-(3-nitrophenyl)-9-
phenyl-8,9,10,11-tetrahydro-6H-benzo 

[b][1,4]benzodiazepin-7-one 453.498 -10.6

5. ZINC02573756

(4S)-2-amino-1-(3-cyano-4,5,6,7-
tetrahydro-1-benzothiophen-2-yl)-7,7-
dimethyl-4-(4-nitrophenyl)-5-oxo-6,8-
dihydro-4H-quinoline-3-carbonitrile

499.596 -10.4

6. ZINC00988780 2-phenylbenzimidazo[2,1-b]benzo[lmn]
[3,8] phenanthroline-1,3,6 (2H)-trione 415.408 -10.3
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7. ZINC00663998

6-amino-8-[2-[(2-cyanophenyl) methoxy]
phenyl]-8H[1,3]dioxolo [4,5-g]chromene-

7-carbonitrile 423.428 -10.2

8. ZINC00726045

4-[(1-acetyl-3-phenylpyrazol-4-yl)
methylidene]-2-(2-chloro-5- 

nitrophenyl)-1,3-oxazol-5-one 436.811 -10.2

9. ZINC01922868

N'-(2-hydroxy-5-nitrobenzylidene)-4-
biphenylcarbohydrazide

360.349 -10.0

10. ZINC00724735

N-[[2-(4-ethoxyphenyl)-1, 
3-benzoxazol-5-yl]carbamothioyl]-4-

fluorobenzamide 435.48 -9.9

Table 3:  ZINC Database ID number, chemical structure, IUPAC name, molecular weight and binding energy of the top scored ligands with the G-glycoprotein of Nipah 
Virus using docking software AutoDock Vina.

inhibitor shown in Table 1 by calculating the inhibitory constant (Ki) of 
the protein inhibitor complex, which is correlated to the concentration 
at which 50% of the protein is inhibited (IC50). NSC308835 showed 
the lowest Ki value by which we can measure how much effective this 
compound as drug.

The magenta dot lines denote the hydrogen bonds. Residues with 
hydrophobic contracts with the ligands are leveled in black. All the 
amino acid residues which involved in molecular interaction are shown 
in wire frame drawing and colored by atom types in which hydrogen 
is colored gray, carbon green, oxygen red, nitrogen blue, and sulfur 
yellow. Ligands are shown in stick drawing. (E) Superimposition of 
Ribavirin and four discovered compounds. Crystallized conformation 
of Ribavirin is shown in red, NSC308835 is shown in red green, 
NSC37553 is shown blue color, NSC400770 is shown in yellow color 
and NSC5157 is shown in cyan color.

Discussion 
Virtual Screening, an in silico tool for drug discovery, has emerged 

as an important tool in our quest access towards the novel drug like 
compounds. Nipah virus encephalitis remains a pharmacologically 
under estimated disease despite the high mortality rate, especially in 
the developing countries like Bangladesh, where access to medication 
facilities is limited. To perform virtual screening NCI Diversity Set-
11 containing 1592 diverse compounds tested in NCI National Center 
Institute) that facilitated by not to scorn the whole NCI database were 

chosen. A more 20,000 drug-like compounds from ZINC database 
were also screened. Alongside, the fact which motivated us to use Auto 
dock Vina as virtual screening platform for molecular docking as it is 
not commercial and can be run on a single personal computer. 

Binding site of NiV-G

The binding pocket of NiV-G determined by CASTp server 
manifests that a number of residues are engaged in the active site of 
NiV-G protein. The most active residues in binding pocket are used for 
grid box selection. As the Ephrin binding site area is closely placed we 
selected the whole area as Grid box for performing virtual screening. 
Among the active site residue Asp2I9, Lys560 and His281 play an 
important role in small ligand binding.

Docking of NSC compounds

Computer aided simulation study using molecular docking 
techniques performed on the NCI Diversity Set- 11 resulted 
NSC308835 and NSC37553 are bounded at the minimal energy to 
the NiV-G. In the docking study of Ribavirin, we found that it binds 
with the active site residues such as with Lys560, His28I, Pro220, 
Gly352 and Cys282 which are revealed as active site in the study. The 
structure activity relationships of the best hit, NSC308835, against 
NiV-G observed VIS docking interaction exposes that the oxygen and 
hydrogen functionalities have a strong hydrogen bond interaction 
with Lys560, Asp219 and Gly506 amino acid present in the active site 



Citation: Ali MH, Anwar S, Roy PK, Ashrafuzzaman MD (2018) Virtual Screening for Identification of Small Lead Compound Inhibitors of Nipah Virus 
Attachment Glycoprotein. J Pharmacogenomics Pharmacoproteomics 9: 180. doi: 10.4172/2153-0645.1000180

Page 7 of 8

Volume 9 • Issue 2 • 1000180
J Pharmacogenomics Pharmacoproteomics, an open access journal
ISSN: 2153-0645

Figure 2: Binding of Ribavirin with NiV-G. (A)Ribavirin is shown in stick form 
and magenta colored dotted line represents the H-binding. All the amino acid 
residues which involved in molecular interaction are shown in wire frame 
drawing and colored by atom types in which hydrogen is colored gray, carbon 
green, oxygen red, nitrogen blue, and sulfur yellow Residueswith hydrophobic 
contracts. (B) Binding of Ribavirin 735 into the active site pocket of NiV-G. 

of NiV-G I and thus these groups are essential for activity. Docking 
studies of the N8C37553 compounds with NiV-G. revealed that oxygen 
and hydrogen functionalities are making hydrogen interacting with the 
active site containing Lys560 und Gly506 amino acid of active site. 

The combination of these interactions is also found in the docking 
analysis of Ribavirin which is suggested as the potential drug for the 
treatment of NiV encephalitis [18] and this prove that NSC308835 and 
NSC37553 is meaningful for the test compound. In addition although 
all compounds arc able to bind the active site of the gorge, not all of 
them are able to interact with all the important residues at the binding 
sites. Ligand size may be one of the reasons for some of the activities 
being low. 

Docking of ZINC database compounds

We have performed a virtual screening study enumerating the 
ZINC drug-like database for potential inhibitor against NiV-G. About 
twenty thousand drug-like compounds have been virtually screened 
for the potent drug-like molecule against NiV-G. The drug-like 
compounds were filtered by Lipinski’s “Rule of five” that sets the criteria 
for drug-like properties. According to this rule, poor absorption is 
expected if MW>500, logP>5, hydrogen bond donors>5, and hydrogen 
bond acceptors>10 [41]. Virtual screening of ZINC database revealed 
that ZINC00707572 and ZINC01019034 manifests the lowest binding 
affinity after docking simulation. ZINC00707572 showed the lowest 
binding free energy confirming the best docking feature in the active 
site of NiV-G. The docking study of ZINC00707572 against NiV-G 
resulted that florin and oxygen functionalities have strong hydrogen 
interactions with Gly506 and Tyr508 amino acids present in the active 
site of NiV-G and therefore these groups are essential for activity. In 
the active site, two benzyl rings form two π-π s interactions within the 
Lys560. Another benzyl ring forms another π-π interaction within the 
Trp504. 

Docking of ZINC01019934 exposed that hydrogen and nitrogen 
functionalities have strong interactions with Tyr508, Gly506 and 
Asp219 amino acids which are suggested as active site residues 
predicted by CASTp active site prediction server. One π-π interaction is 
formed between one benzyl ring of active site and His281. Additionally, 
H-bond and π-π interaction, several other interactions are also 
analyzed which played important role in ligand binding. In both cases 
Lys560 and His281 play a major role in molecular docking of small 
ligand into the active site of Nipah virus attachment glycoprotein. The 
binding pattern of this two ZINC compound is relevant to the control 
ligand Ribavirin. That is, ZINC00707572 and ZINC01019934 would be 
used as test compounds for curing NiV encephalitis.

Conclusion
In conclusion, the previously mentioned π-π interactions, 

hydrogen bonds, and strong hydrophobic interactions formed between 
the inhibitors and the nearby NiV-G side chains serve dual roles: 

1) To inhibit the catalytic activity of NiV-G by competing with 
Ephrin binding site, and 

2) To prevent NiV encephalitis by blocking the Ephrin recognition 
zone at the peripheral site. 
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Figure 3: Binding conformations of top four NCI compounds inside the active 
site of the G- glycoprotein. (A) NSC308835. (B)NSC37553. (C) NSC400770. 
(D) NSC5157. The magenta dot lines denote the hydrogen bonds. Residues 
with hydrophobic contracts with the ligands are leveled in black. All the amino 
acid residues which involved in molecular interaction are shown in wire frame 
drawing and colored by atom types in which hydrogen is colored gray, carbon 
green, oxygen red, nitrogen blue, and sulphur yellow. Ligands are shown in 
stick drawing. (E) Superimposition of Ribavirin and four discovered compounds. 
Crystallized conformation of Ribavirin is shown in red, NSC308835 is shown 
in red green, NSC37553 is shown blue color, NSC400770 is shown in yellow 
color and NSC5157 is shown in cyan color. 
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