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Abstract
The high levels of morbidity and mortality of chronic non-communicable diseases (most of which highly associated 

with aging) worldwide indicate the need of studying the underlying mechanisms of physiological aging and aging 
related-impairments, as well as developing and improving therapeutic approaches such as cell therapy. In this 
manuscript, two well-established aging mechanisms – telomere shortening and DNA damage accumulation – are 
briefly reviewed regarding their roles in hematopoietic stem cells function and transplantation. Based on the available 
literature, up-regulating both telomerase and tumor suppression responses is proposed in a two-step strategy as a 
promising mechanism to benefit hematopoietic stem cell transplantation qualitatively (by enriching the cell pool for 
healthy hematopoietic stem cells) and quantitatively (by in vitro expansion of healthy hematopoietic stem cells). The 
applications, limitations and perspectives associated with the proposed strategy are also discussed.
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Introduction
The recent trends in the age structure of most populations 

worldwide has changed the scenario of common causes of morbidity 
and mortality, with chronic non-communicable diseases (e.g., 
cardiovascular diseases, cancer and diabetes) featuring as (or among) 
the most frequent ones [1]. Currently, such diseases are considered 
a public health concern, indicating the importance of elucidating 
the mechanisms implicated in physiological aging and aging-related 
impairments. Such elucidation may contribute to the development and 
improvement of new therapeutic strategies for age-related diseases, 
with cell therapy featuring among the most promising approaches 
[2]. Regarding aging physiology and associated diseases, telomere 
biology is among the most relevant molecular mechanisms [3]. 
Briefly, telomeres are guanine-rich (5’ TTAGGG 3’ in humans) DNA 
tandem repeats located at the end of eukaryotic chromosomes [4] 
associated with at least six proteins, (called shelterin) which compose 
the telomeric structure [5]. The telomeres have several important 
roles, such as preventing both the recognition of chromosome ends 
as sites of DNA damage and the occurrence chromosome end fusions 
[6]. An important aspect of telomere biology is that the telomeres are 
shortened after a cell division due to the end replication problem (i.e., 
the incapacity of the replication machinery to replicate the ends of 
eukaryotic chromosomes) [7], resulting in telomere dysfunction with 
time. Since telomere dysfunction elicits tumor suppression responses, 
critical telomere shortening results in loss of cell viability by either 
senescence or apoptosis [8].

In spite of telomere shortening being a natural consequence of 
DNA replication, telomerase activity counteracts the end replication 
problem by promoting reverse transcription-based telomere 
lengthening. Telomerase is a ribonucleoprotein enzymatic complex 
composed by two main subunits: the telomerase reverse transcriptase 
(the catalytic subunit, encoded by TERT in humans and Tert in mice – 
GeneEntrezIDs: 7015 and 21752, respectively) and the telomerase RNA 
component (the RNA template for reverse transcription, encoded by 
TERC in humans and Terc in mice – GeneEntrezIDs: 7012 and 21748, 

respectively) [9,10]. The relevance of telomere biology (especially 
of telomerase) for human health and disease is such that the 2009 
Nobel Prize in Medicine and Physiology was awarded to telomerase 
discoverers [11]. Telomerase activity is present in primitive cell types, 
such as embryonic stem cells, germline stem cells and adult stem cells 
(ASCs) [12-14]. In the last, however, telomerase activity is sufficient 
only to delay telomere shortening [15,16], thus resulting in ASCs 
eventually reaching a critical telomere length state after several cell 
divisions. Given the importance of ASC to maintain homeostasis by 
allowing tissue self renewal during the lifespan, telomere-related ASC 
exhaustion is currently among the best established aging mechanisms. 
In disease, telomerase activity plays a major role in cancer, being 
present in 85-90% of human cancers [17,18]. This makes telomerase 
one of the most prevalent cancer makers and indicates that telomerase 
activation is the most frequent mechanism of replicative immortality. 
It is important to note, however, that telomerase activity is commonly 
regarded as a consequence of genetic instability rather than an early 
event in the carcinogenic process. Interestingly, telomere dysfunction 
is considered an early cancer event that is highly associated with genetic 
instability [19], indicating that telomere length/integrity, telomerase 
activity and tumor suppression responses interact in a complex 
fashion, which may regulate their association with ASC impairment 
and cancer [20].

Telomere Biology in Hematopoietic Stem Cell 
Physiology and Transplantation

Considering the importance of telomere biology for tissue self-
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renewal by regulating ASC viability, it is intuitive that telomere-
associated diseases are most prominently manifested in high 
turnover tissues, such as the skin and the blood. In the hematopoietic 
compartment the cell turnover is estimated around 109 cells produced 
per hour [21] and is known to be highly dependent on hematopoietic 
stem cells (HSCs) [22]. In telomere syndromes (phenotypes – normally 
a disease-related state – caused by genetic profiles associated with 
telomere biology [23]) such as dyskeratosis congenita, blood-related 
manifestations are particularly common, being bone marrow failure 
the most common cause of death (approximately 60% to 70% of 
cases) [24]. These manifestations are well-characterized consequences 
of HSC exhaustion due to premature critical telomere shortening, 
resulting in dyskeratosis congenita being considered a stem cell disease 
[25]. Although dyskeratosis congenita is not a particularly frequent 
condition, it serves as an useful model for understanding telomere 
biology implications for disease [26]. Regarding stem cell therapy and 
tissue engineering, the notion that HSCs are especially dependent on 
telomere integrity due to their very high turnover strongly suggests 
that HSC transplantation (HSCT) has the potential to be improved by 
exploring telomere-related strategies.

There is a number of studies that investigated the roles of telomere 
biology in HSC. As pointed by others [23], there is solid evidence 
(from investigations in both humans and mice) that quantitative and 
qualitative defects in HSCs caused by telomere shortening result in 
HSC exhaustion, and a significant portion of such evidence came from 
studies on telomere syndromes [27-33]. Regarding the importance 
of telomere biology for HSCT, one of the earliest studies provided 
convincing evidence for telomere shortening in HSC in vivo by doing 
serial transplantations in murines [34]. In the following year, two 
studies added further evidence to this notion: one study showed that 
neutrophil telomere length was shorter in human HSCT recipients 
(when compared to their donors) at engraftment and 6 and 12 months 
after HSCT [35]; the other study evidenced, in mice, that stimulated T 
cells present telomere lengthening by telomerase activity, suggesting 
that telomerase in HSCs may be important to extend proliferative 
capacity after transplantation [36]. By this time, the potentially 
benefic effects of overexpressing TERT to enhance HSC replicative 
potential during transplantation were already recognized [37] due 
to the understanding that the limited proliferative potential of HSC 
associated with short telomeres being a relevant concern regarding ex 
vivo HSC expansion for therapeutic purposes [38]. A subsequent study 
reinforced the notion that transplanted HSCs suffer replicative stress 
due to telomere shortening, resulting in accelerated senescence [39]. 
In addition, two key studies provided direct evidence for the potential 
of telomerase activation to improve HSCT. By comparing wild type 
and telomerase-deficient mice donors, it was shown that telomerase 
allows HSC to be viable after more rounds of serial transplantation 
and that telomerase counteracts telomere shortening that occurs 
during transplantation [30]. The second study overexpressed (using 
retroviral vectors) TERT in CD34+ and AC133+ cord blood cells and 
provided evidence for a role of telomerase in HSC proliferation and 
differentiation abilities [40].

DNA Damage Implications for Hematopoietic Stem 
Cells Culture

It is well evidenced that telomeres and telomerase have major 
roles in HSC senescence and that such roles can be exploited in 
clinical applications of HSC by approaches based on telomere biology 
manipulation in order to delay HSC replicative exhaustion [41]. It 
is important to note, however, that telomere shortening is not the 

only mechanism proposed for organism aging, which is currently 
considered a multifactorial trait [42]. Among such mechanisms there 
is DNA damage accumulation [43,44], which is of special relevance 
for this manuscript since it has been studied in HSCs. By observing 
HSC of mice deficient for different genomic maintenance pathways 
(including nucleotide excision repair, telomere maintenance and non-
homologous end-joining), it has been shown that accumulated DNA 
damage functionally impairs HSC (but does not depletes HSC reserves) 
with age, culminating with HSC functional exhaustion. Evidence for 
DNA damage accumulation in wild type HSCs has also been provided 
by this study, indicating that such event occurs physiologically [33]. 
These findings are in agreement with another study using a mice model 
for Ligase IV syndrome, which are deficient for DNA double-strand 
break repair by non-homologous end-joining. Based on their findings, 
the authors suggested that HSCs sensitivity to non-homologous end-
joining deficiency (a conclusion extensible to other types of DNA 
damage accumulation) is a key factor for HSCs to withstand culture 
and transplantation [45]. The findings of these studies, which have 
been corroborated and complemented by additional investigations 
[46], provide strong evidence for the notion that genomic stress is a 
causal factor of HSCs aging by limiting their ability to maintain tissue 
homeostasis [47]. In addition to the diminished capacity of HSC caused 
by DNA damage accumulation, it is important to note that such event 
is among the most well-established cancer mechanisms [48,49]. This 
reasoning suggests that in vitro culturing HSCs naturally induces their 
decay (which is well established by the literature, as discussed in the 
present text) and may result in accumulation of potentially dangerous 
characteristics in the context of cancer.

The fact that telomerase is associated with cancer is a significant 
concern for the use of telomerase activation in cell culture with 
clinical purposes. As discussed elsewhere [50], there are alternatives 
to reduce this risk, such as using moderate and transient TERT up-
regulation by chemical activators instead of lentivirus-based systems 
and co-treatment with differentiation agents (which would not apply 
to HSCT). However, it is important to not underestimate the cancer 
risk associated with telomerase, especially when considering the 
emerging evidence for non-canonical (i.e., telomere-independent) 
roles of telomerase in processes such as apoptosis resistance [51,52], 
DNA damage repair [53] and in cancer-related signaling pathways 
[54]. Interestingly, TERT up-regulation has also been shown to reduce 
intracellular reactive oxygen species production [55,56], indicating 
that telomerase activity stimulation by TERT up-regulation may be 
accompanied by antioxidant defenses, which has potentially beneficial 
applications for HSC in vitro culture. Such application is to be 
cautiously considered, however, since reducing oxidative stress could 
potentially lead to maintenance of certain injuries/damages that would 
normally be eliminated from the HSC pool by triggering intracellular 
reactive oxygen species production that results in cell cycle arrest or 
death.

A Two-Step Strategy for HSC In Vitro Expansion: A 
Hypothesis to Boost HSCT

Tumor suppression responses are known (mostly from cancer 
research) to be key factors to prevent or reduce DNA damage 
accumulation along cell divisions [49]. Tumorigenesis is characterized 
by increased mutability rates, which is significantly favored by 
compromising the tumor suppression machinery that monitor 
genomic integrity and detect DNA damage, triggering either 
senescence or apoptosis [57-59]; and in vivo experiments confirm the 
implications of such pathways for cancer [60]. Interestingly, tumor 
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suppression responses have been evidenced to prevent (or at least 
reduce) accumulation of cells with DNA damage within a given ASC 
pool, since damaged ASCs undergo either senescence or apoptosis [61]. 
All this evidence supports the notion of up-regulating both telomerase 
activity and tumor suppression responses in order to increase cell and 
organism life-span without increasing cancer risk.

Such hypothesis has been addressed in an elegant experiment 
using mice that overexpressed either Tert (in the epithelia, regulated by 
Krt5 – GeneEntrezID: 110308 – promoter or tumor suppression genes, 
and a group that overexpressed both (called the SUPER-M mice) [62], 
resulting in mice with less aging but no increase in cancer rates [63]. 
The median survival values (both overall and cancer-free) for each 
mice group are shown in figure 1. These results, in light of the biology 
already elucidated, allowed the proposal of new stem cell-based models 
for aging, focusing on the roles of telomerase and tumor suppression 
[64]. In fact, the median survival values shown in figure 1 indicate that 
telomeres and tumor suppression are effect modifiers of each other, 
since the median survival increase of the SUPER-M mice compared 
to the control group is greater than the simple addition of the median 
survival increase due to overexpression of Tert and tumor suppressors 
individually, also compared to the control group (which can be easily 
identified by comparing groups 1-3 and 2-4, from top to bottom). 
This evidence for effect modification strongly suggests that telomerase 
and tumor suppression interact in a complex fashion [20], and such 
interaction can be exploited in cell culture with clinical application 
purposes.

The evidence discussed so far strongly suggests that telomerase 
activation and tumor suppression have significant implications (either 
individually and combined, with evidence for interaction between the 
two mechanisms) for in vitro culturing of HSCs, which is required for 
many of the potential clinical applications regarding cell therapy. In a 
two-step strategy to boost HSCT by selecting and expanding healthier 
(i.e., cells with reduced DNA damage – and other markers of stress 
– accumulation and with relatively long telomeres) HSCs based on 
up-regulation of both telomerase activity and tumor suppression 
responses (Figure 2). According to this strategy, the isolated HSCs are 
basically a pool of cells with different degrees of damage accumulation 
(according to, for example, donor’s age and lifestyle). By up-regulating 
tumor suppression responses, the probability of detecting such damage 
and, consequently, of eliminating damaged cells from the HSC pool by 
senescence or apoptosis, increases. Importantly, there is no telomerase 

up-regulation in this step, which reduces the chances that telomerase 
activity confers apoptosis resistance to some stress markers present 
in the HSC pool (since damaged HSCs are likely to be sensed and 
eliminated by the tumor suppression machinery). This process results 
in a HSC pool enriched for healthy cells, which can be expanded by 
serial passages under up-regulation of telomerase activity and tumor 
suppression responses, in order to avoid undesirable HSC telomere 
shortening (or even promote HSC telomere lengthening) and protect 
the cell pool from accumulating stress markers (given the evidence 
for protective roles of both telomerase activity and tumor suppression 
responses).

Conclusions: Applications, Limitations and Perspectives
The relevance of the proposed strategy lies on the importance 

of HSCT and to the plausible generalizability of the benefits of this 
approach to culture other types of cells (as well as to other applications 
using HSCs). HSCT is the first form of stem cell therapy used in human 
medicine [65], and its current applications are not limited to myeloma 
or leukemia patients [66,67], with therapeutic uses for auto-immune 
and cardiovascular disease [68,69]. HSCT requires isolation of HSCs, 
but does not select for healthy cells [70]. The proposed strategy allows 
expanding isolated HSCs in a selective condition that enriches for 
healthy cells, thus benefiting HSCT both quantitatively and qualitatively. 
Moreover, the strategy may also enlarge the range of potential donors. 
For instance, HSCT using HSCs from old donors are known to increase 
the risk of graft-versus-host disease and decrease probability of survival 
[71,72]. Considering that DNA damage accumulation and telomere 
shortening are aging hallmarks (as already discussed here), it is plausible 
to hypothesize that applying the two-step strategy would alleviate 
HSCT difficulties associated with old donors. In this regard, telomere 
shortening has been associated with other HSCT issues, including graft 
failure [73]. This is an important consideration given the advantages 
of receiving HSCs from a close relative (such as a sibling or a parent) 
regarding graft-versus-host disease risk [74], since it might well be the 
case that the closest relatives are in the risk age group regarding HSCs 
donation. Moreover, a recent study suggests that long-term immune 
reconstitution after haploidentical HSCT (which is a good alternative 
for patients lacking a human leukocyte antigen-matched donor [75]) 
largely depends on de novo T cell production, with implications for 
telomere length since naive-enriched CD4+ T cell populations of HSCT 
recipients presented shorter telomeres than age-matched controls, 
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Figure 1: Wildtype: Sp53 mice. +Tumor suppressors: Sp53/Sp16/SArf mice. 
+Telomerase: Sp53/ TgTert. SUPER-M: Sp53/Sp16/SArf/TgTert. The values in 
each cell represent the median increase in survival, comparing the two strains 
(reference strain → group of interest). The values for the “Wildtype →+Tumor 
suppressors” and “+Telomerase → SUPER-M” comparisons were calculated 
based on the values for the other comparisons. Blue boxes: overall median 
survival. Red boxes: cancer-free median survival.
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although telomere length was similar in differentiated CD4+ and CD8+ 
T cells [76].

In spite of the proposed strategy being potentially beneficial for 
HSCT and other cell therapy applications, it is important to note 
some of its limitations. First, there are limitations of HSCT that are 
unlikely to be alleviated by enriching the HSC pool for healthy cells. 
For instance, although aplastic anemia (a condition associated with 
short telomeres) can be treated by allogeneic stem cell transplant in 
humans [23], a recent study on the effectiveness of allogeneic HSCT 
in 34 dyskeratosis congenita patients reported a 10-year probability 
of survival of 30%, with ten deaths occurring until 4 months after 
HSCT due to graft failure (in 6 cases) or other transplant-related 
complications [77]. Although 9 of these patients had mismatched 
related or unrelated donors, an additional possibility comes from 
studies that showed that telomere dysfunction in telomerase-deficient 
mice induces alterations of the hematopoietic environment, resulting 
in HSC impairments (including HSC function, engraftment, and 
B and T lymphopoiesis) independently of the telomere length of 
HSCs themselves [78-80]. These studies suggest that, for patients 
with particularly short telomeres (e.g., very old patients or cases of 
telomere syndromes), the engraftment might be complicated due to the 
recipient’s hematopoietic environment, thus reducing the importance 
of the quality of the HSCs used for transplantation. Another important 
consideration is related to DNA damage accumulation of HSCs. There 
are components other than surveillance mechanisms that compose the 
DNA maintenance machinery, such as direct DNA damage repair and 
inactivation or interception of mutagenic molecules before they cause 
DNA damage [49] and, as discussed here, the former has been strongly 
evidenced to occur in HSCs as a causal factor of aging. Nevertheless, 
these two limitations are unlikely to undermine the usefulness of the 
proposed strategy, since using healthier HSC for HSCT would be 
beneficial for several applications and the results of the SUPER-M mice 
study indicate that up-regulating telomerase and tumor suppression 
(without specifically targeting other pathways associated with DNA 
maintenance) are sufficient to reduce/delay the occurrence of aging 
phenotypes at no (significant) increase in cancer risk.

Although the proposed model follows logically from the current 
knowledge regarding telomere biology and DNA damage accumulation 
in HSCs, it has not been experimentally tested to date. An important 
perspective would be to simulate (in mice, for example) different 
conditions of common application of HSCT in order to verify whether 
or not (and to what extend) the two-step strategy actually provides 
better results than standard HSCT. One of the most interesting 
situations would be to compare the effect of the proposed strategy on 
HSCT having donors that are likely to have less healthy HSCs, such as 
late-generation telomerase-deficient mice that had telomerase restored 
(by using a Cre-LoxP recombination system, for example) or mice 
subjected to different types of unhealthy factors (e.g., high-fat diet). 
Another critical perspective concerns the methods for up-regulating 
telomerase and tumor suppression responses, since temporary 
modulators (such as molecules added to the culture medium) would 
be preferred over approaches such as lentivirus-mediated transfection. 
In this regard, chemical modulators of telomerase activity [81-83] 
and of p53 (a major tumor suppressor protein [84], encoded by TP53 
in humans and Tp53 in mice – GeneEntrezIDs: 7157 and 22059, 
respectively) activity [85] have been identified and studied, showing 
in vitro and in vivo activity. It is important to consider, however, the 
of using genetically engineering HSCs in order to greatly up-regulate 
telomerase and tumor suppression responses for HSCT procedures 
of more extreme cases, although the risk of such procedure is yet to 

be investigated. In conclusion, the proposed two-step strategy is a 
plausible method to enrich the HSC pool for healthy cells, which may 
have important beneficial impacts – quantitatively and qualitatively – 
for HSCT.
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