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Editorial
The pyruvate, orthophosphate dikinase (PPDK, EC 2.7.9.1), crucial

plant enzyme in the process of concentrating CO2 for Calvin cycle,
catalyzes phosphoenolpyruvate-regeneration phase of the C4
photosynthetic pathway [1]. However plants possess also non-
photosynthetic isoform of PPDK, which functions are less understood,
probably due to its low abundance [2]. In all plants, PPDK is located in
both cytoplasmic and plastidic compartments [3]. PPDK catalyzes the
reversible ATP- and Pi- dependent formation of phosphoenolpyruvate
from pyruvate [4,5].

The abundance and localization of PPDK can be controlled by
elements within the promoter [6,7], while the activity is in addition to
Mg2+ and temperature regulated by unusual PPDK regulatory protein
(RP). This protein caused light/dark reversible regulation of
chloroplast localized PPDK, in both C3 and C4 plants [6,8]. Its
exceptionality lies in at least 3 points: i) RP is bifunctional, catalyzing
both PPDK phosphorylation (inactivation) in dark and
dephosphorylation (reactivation) in light, whereas these reactions are
generally catalyzes by 2 different groups of enzymes, protein kinases
and phosphates, respectively ii) the use of ADP instead of ATP as its
phosphoryl donor and iii) utilization of an Pi-dependent, PPi-forming
phosphorolytic dephosphorylation mechanism rather than the simple
hydrolysis, which is employed by most protein phosphatase [8].

The photosynthetic function of C4 PPDK in chloroplasts of
mesophyll cells is obvious; on the contrary various functions are
suggested for non-photosynthetic PPDK of C3 plants. The tissues with
the highest PPDK content in C3 plants appear to be seeds and mid-
veins of leaves [7]. It is thought that in maturing seeds cytosolic PPDK
is involved in amino acids inter-conversions and regulation between
starch and storage protein accumulation, whereas in mid-veins of C3
plants in the provision of phosphoenolpyruvate to shikimate pathway
[6]. Cytosolic PPDK in leaves of Arabidopsis thaliana plays an
important role in the remobilization of amino acids during natural leaf
senescence and thus in increase of seeds weight and N-content [7].

Our studies showed that PPDK could be also involved in stress
defense responses [9-13]. The both, abiotic stress caused by drought
[10] and biotic stress induced by viral infection [9,11] significantly
increased PPDK activity in leaves of C3 tobacco plants. We suppose
that PPDK in cooperation with phosphoenolpyruvate carboxylase,
NAD-malate dehydrogenase and NADP-malic enzyme could
participate in the conversion of NADH to NADPH, even at the
expanse of ATP. But NADPH is indispensable coenzyme of antioxidant
enzymes, enzymes involved in nitrogen assimilation and important
compound for biosyntheses e.g. fatty acids or osmotically active
compounds. All these features are helpful in conditions of stress [14].
In addition, the reverse reaction catalyzed by PPDK yielding ATP and

Pi represents an obvious bioenergetic advance during stressful periods
when mitochondrial ATP production via oxidative phosphorylation
and photosynthesis may be limited or when the demands on ATP due
to biosynthetic reactions are enhanced (as in case of stress) [10,15].

We also found that the PPDK activity could be affected by plant
hormones cytokinins [13]. The PPDK activity was generally stimulated
in transgenic rooted tobacco plants overproducing cytokinins (Pssu-ipt
transgenic plants) and Pssu-ipt transgenic grafted plants compared
with the control tobacco plants. Interestingly, during potyviral
infection the activity of PPDK in Pssu-ipt transgenic plants was not
significantly increased or the increase of the activity was smaller and
started later than in infected non-transgenic controls. The transgenic
plants showed lower virus accumulation and therefore lesser demand
for the synthesis of viral proteins. It seems that high endogenous
cytokinins content affects susceptibility to Potato virus Y, strain NTN.
Tobacco plants overproducing cytokinins probably established pre-
infection barrier prior to the infection that helped suppress or slow
down the virus accumulation and symptoms development [13].

The presence of xenobiotics in soil, which are taken up by plant
roots, can also act as a stressor and affect the plant metabolism. The
anticonvulsant drug carbamazepine is considered as an indicator of
sewage water pollution. Its metabolite 10,11-carbamazepine caused a
moderate increase of the PPDK activity in leaves of both C3 plant
sunflower and C4 plant maize. The increase of PPDK activity was more
pronounced in maize roots. The presence of xenobiotics affected the
metabolism of root enzymes, maize willingly extracted 10,11-
carbamazepine from the soil, thus could be the plant with the potential
to remove this metabolite [12].

Also other authors find out the relations of PPDK to stress, e.g.
abscisic acid, all types of water stress including drought caused by
polyethylene glycol, salt, submergence, low-oxygen stress and cold
markedly induce PPDK [16-18].
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