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ABSTRACT

Drug-mediated blockade of the voltage-gated potassium channel (hERG) and the voltage-gated sodium channel 
(Nav1.5) can lead to severe cardiovascular complications. This rising concern has been reflected in the drug 
development arena, as the frequent emergence of cardiotoxicity from many approved drugs led to either discontinuing 
their use or, in some cases, their withdrawal from the market. Predicting potential hERG and Nav1.5 blockers at the 
outset of the drug discovery process can resolve this problem and can, therefore, decrease the time and expensive 
cost of developing safe drugs. One fast and cost-effective approach is to use in silico predictive methods to weed out 
potential hERG and Nav1.5 blockers at the early stages of drug development. Here, we introduce two robust 2D 
descriptor-based QSAR predictive models for both hERG and Nav1.5 liability predictions. The machine learning 
models were trained for both regression, predicting the potency value of a drug, and multiclass classification at three 
different potency cut-offs (i.e., 1 μM, 10 μM, and 30 μM), where ToxTree-hERG Classifier, a pipeline of Random 
Forest models, was trained on a large curated dataset of 8380 unique molecular compounds. Whereas ToxTree-
Nav1.5 Classifier, a pipeline of kernelized SVM models, was trained on a large manually curated set of 1550 unique 
compounds retrieved from both ChEMBL and PubChem publicly available bioactivity databases. The hERG model 
yielded a multiclass accuracy of Q4=74.5% and a binary classification performance of Q2=93.2%, sensitivity=98.7%, 
specificity=75%, MCC=80.3%, and a CCR=86.8% on an external test set of N=499 compounds. The proposed 
inducer outperformed most metrics of the state-of-the-art published model and other existing tools. Additionally, 
we are introducing the first Nav1.5 liability predictive model achieving a Q4=74.9% and a binary classification of 
Q2=86.7% with MCC=71.2% and F1=89.7% evaluated on an external test set of 173 unique compounds. The 
curated datasets used in this project are made publicly available to the research community.
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INTRODUCTION 

Drug discovery is an immensely expensive and time-consuming 
process posing numerous formidable challenges. The development 
of a new drug requires 6 to 12 years and costs as much as $2.6 billion 
[1-3]. Computer-Aided Drug Discovery (CADD) holds a significant 
promise to reduce the costs and to speed up the development of 
lead candidates at the outset of drug discovery [3,4]. In recent years, 
toxicity prediction algorithms have attracted growing attention 
from researchers in academia and industry alike. They represent 
an increasingly important component of modern CADD, with 
cardiotoxicity prediction algorithms being at the forefront of these 
methods [4].

The main motivation driving this new direction is the significant 
losses endured by pharmaceutical companies in withdrawing several 
drugs from the market or in halting many drug discovery programs 
in their pipelines due to unforeseen cardiotoxicities during the early 
stages of drug development. Furthermore, an additional motivation 
inspiring the field is the exponential increase of bioactivity data 
on cardiac ion channel blockers deposited in public databases (e.g. 
ChEMBL and PubChem). These huge data pools made cardiac ion 
channels an excellent avenue to apply modern statistical models 
to predict their drug off-target interactions and to achieve high 
performances via the use of Machine Learning (ML) algorithms.

Quantitative Structure-Activity Relationship (QSAR) is a well-
established strategy in the field of chemistry and pharmacy for the 
reliability and reproducibility of the constructed models [5]. As 
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most of the earlier research was focused only on predicting hERG 
liability and ignored other cardiac ion channels (e.g. voltage-gated 
sodium channel(Nav1.5) and the voltage-gated calcium channel 
(Cav1.2)), this paper represents a major step towards closing this 
gap. Here we follow the best practices methodology of QSAR to 
build an alternative hERG liability prediction model. Our hERG 
solution competes with model [6]. While our model is trained on 
the same large development hERG dataset and tested on the same 
evaluation set used, but further cleaned from existing duplicates, 
it outperformed most of their metrics with higher performances 
and with more in-depth details of the sub-models’ characteristics. 
Furthermore, we transferred this knowledge to build and introduce 
the first Nav1.5 liability classification model in the field of 
computational toxicology, achieving an accuracy of Q2=86.7% 
for binary classification and multiclass classification accuracy of 
Q4=74.9%.

Related work

Over the last two decades, scientists and researchers made 
significant use of several ML algorithms to build robust models 
to predict mainly hERG inhibition. In their review papers, 
summarized previous hERG liability ML models published in the 
field [7,8]. Based on their findings, the most used machine learning 
algorithms in the early 2000s were Bayesian, Partial Least Squares 
(PLS), and Neural Network Inducers. However, during the current 
decade, scientists shifted towards the use of Random Forest (RF) 
and Support Vector Machine (SVM) due to their higher empirical 
performances in the field.

As of recent related works on hERG classification models, trained 
a RF model with descriptors calculated on 3,721 compounds 
measured in a biding assay and 765 compounds measured in 
a functional assay from the ChEMBL database showcasing 
a mean prediction accuracy of ~0.80. In a different research 
publication used SVM to build a predictive model combining both 
4D-fingerprints and 2D and 3D molecular descriptors on a training 
set of 876 compounds from the PubChem BioAssay database [9-
13]. Their model achieved an accuracy of 0.87 on an evaluation 
set of 456 compounds. Another interesting work using Bayesian 
classification models was published [14]. The group gathered a 
dataset of 2,389 compounds from the FDA-approved drugs and 
from instances tested on hERG in the literature. Then, they trained 
their model using four molecular properties (MW, PSA, AlogP, and 
pKa_basic), as well as extended-connectivity fingerprints (ECFP_4). 
The development set was split into a training set of 2,389 instances 
and a test set of 255 compounds. The model achieved an accuracy 
of 0.91 on the test set and was further evaluated in another 
work on an external set of 60 molecular compounds achieving 
an accuracy of only 0.58 [15]. In 2015 deployed a model, named 
Pred-hERG, in a web-based platform to predict hERG liability [16]. 
The model was trained on 5,984 compounds combining both 
Morgan fingerprints and Chemistry Development Kit descriptors 
using RDkit and PaDEL[17]. The model was reported to achieve a 
correct classification rate of 0.84. Whereas, the most recent hERG 
inhibition model published in 2019 represents a consensus model 
following a one-vs-rest approach to build a pipeline of trained RF 
models to perform a multiclass classification at different inhibition 
levels of a given molecular compound [6]. By far, Kumar’s model 
was the most superior in terms of making use of data as well as 
performance. It employed 8705 claimed unique compounds 
from the ChEMBL database. Their methodology consisted of 
applying different sets of 2D descriptors to build each sub-model 
in the pipeline. The authors claimed achieving state-of-the-art 

performance with a Q2=0.92, sensitivity=0.963, specificity=0.786, 
and MCC=0.786 evaluated on an external set of 499 compounds 
from PubChem and literature mining.

METHODOLOGY

Figure 1 represents a graphical representation of the hERG and 
Nav1.5 models building procedure abiding by the best practices 
of data science and QSAR methodology [18]. Our methodology 
involves data gathering; curation, and normalization; feature 
generation and feature selection; splitting data into training, 
validation, and test sets; fine-tuning and building a set of models 
to pick the most performing model with the optimal configuration 
of hyper parameters; and finally evaluation of the best model on 
the test set.

Data collection and curation

Preparing data for both hERG and Nav1.5 is the main step in our 
machine learning models building pipeline. Artificial Intelligence 
(AI) predictive models can be very sensitive if wrong or biased 
data is used during learning. Hence, careful curation of all data 
entries was essential to have reliable models and results. Below is a 
description of the process we followed in data collection, curation, 
and organization while constructing the hERG and Nav1.5 models.

hERG data collection and curation: For hERG liability predictions, 
we gathered data from literature and other open bioactivity data 
sources. We started first by the dataset published as one of the 
largest gathered and preprocessed hERG set publicly available 
to the research community [6]. The set was derived from three 
data sources of molecular compounds including ChEMBL v22, 
PubChem, and external instances from the literature. Data collected 
from ChEMBL v22 resulted in 8705 unique molecular compounds 
[12,19]. From PubChem BioAssay 9,383 molecular records were 
retrieved under the gene id 3757 [11,6,20,21]. Kumar and his fellow 
researchers performed initial data curation on this set and reported 
277 unique molecules. From the literature mining they got a set of 
561 compounds from the published research work [22]. Then, they 
performed normalization and redundancy reduction to report 222 
unique molecular records.

We conducted further investigations and checks on the whole set of 
9204 compounds and found many anomalies (detailed procedure 
to clean the set is explained in the Supplementary Online Material, 
section 1). The curation process led to a high-quality final set of 
8879 entries, where 8380 unique compounds are retrieved from 
ChEMBL, and used solely for training, while the remaining 499 
compounds gathered from both literature and PubChem were used 
for final evaluation only [23].

Figure 1: QSAR/Data Science best practices to perform best model 
selection and battle over fitting.
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Nav1.5 data collection and curation: To build a Nav1.5 model, 
we made use of two publicly available databases, namely the 
ChEMBL v25 database and the PubChem database. We retrieved 
2051 molecular compounds from the ChEMBL v25 database 
with Nav1.5 liability information. Similar to hERG data curation 
and standardization process, different potency records were 
reported by different laboratory assays [9,24]. These data entries 
had records reporting IC_50, K_i, and EC_50 potency values. To 
keep data conformity, only records reporting IC_50 values were 
considered. For the rest of the redundant observations reporting 
different potency values, redundancy reduction procedure was 
conducted. The curation process was done as follows: First, for the 
same compound with multiple potencies, only the latest reported 
value in the last reference was kept. Second, if no latest reference 
is available, the mean value was computed and discarded the 
observations with large standard deviations. Finally, we normalized 
the IC_50 value for each unique compound by converting it to 
a negative logarithmic value, named the PIC_50. The curation 
process resulted in 1655 unique normalized records with reported 
IC_50 values through assays.

From the second publicly available dataset, namely, PubChem 
BioAssay 2381 molecular records were retrieved under the gene id 
6331 (SCN5A-sodium voltage-gated channel alpha subunit 5 for 
human) [20-25]. Manual curation again of all the records was carried 
out. From the retrieved compounds, 721 molecules were discarded 
as they had no potencies reported, resulting in 1660 instances 
with potencies. To keep data conformity, only records reporting 
IC_50 values were considered, resulting in 1654 molecules with 
IC_50  potencies including redundant elements. Redundancy 
reduction was then conducted to filter out duplicate molecular 
compounds (detailed procedure is explained in the Supplementary 
Information, section 2). The final Nav1.5 development set consists 
of 1550 unique molecular compounds, denoted as Dev-Set-Nav in 
the rest of this manuscript, while the final evaluation set contained 
173 instances, denoted as EV-Set-Nav and visualized in Figure S1-
S4, in the Supplementary Information section [26].

Machine learning algorithms

In this work, we opted for Python as the current widely used 
computational and statistical programing language. To classify 
blockers from non-blockers, we adopted for state-of-the-art 
supervised machine learning algorithms used for classification. The 
three classifier algorithms we studied are:

Deep Learning (DL/MLP) [26-28]

Kernelized SVM (SVM) [29,30]

Random Forest (RF) [31,32]

Additionally, hERG liability predictions were analyzed using both 
regression models and pure classification models. For Nav1.5 
data, PCA was used to reduce the high dimensional feature set of 
descriptors before building the machine models.

3.2.1 Principal Component Analysis (PCA): Data often lies on 
a low dimensional manifold embedded in a higher dimensional 
space. PCA can help finding an approximation of the data in a 
target low dimensional space. The approach adopted by PCA is to 
find a new coordinate system in which the data points, that might 
be originally correlated, are linearly uncorrelated. After the linear 
transformation, dimensions with no or low variance can be ignored. 
In other words, we can apply a feature/dimension selection based 
on the principal components exhibiting higher eigen values. Given 

a dataset X €  R^NxD, where N is the number of instances and D 
is the dimensionality of the features in the original set, applying 
PCA to reduce dimensionality from D to K dimensions is outlined 
in the mathematical notations as follows:

Center the data by deducting the mean (This can also be achieved 
via z-score normalization)
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 Compute the covariance matrix
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 Compute the eigen decomposition of Ʃ 

Σ = Γ ΛΓT                                                                            (3)

 Pick the top-K eigenvectors  ΓK  corresponding to the K 
largest eigenvalues of the covariance matrix Ʃ

 Project the data

 Y ΧΓ= 

K                                (4)

A main question to ask here is; How to choose K? The 90% rule 
is frequently used by practitioners in the field. We usually pick the 
first K variances/eigenvalues explaining 90% of the energy.

Deep learning/MLP: The first supervised learning classifier 
investigated was a feed-forward network, also called a Multi-Layer 
Perceptron (MLP) or artificial neural network. The ultimate goal of 
using an MLP is to project input data points to a new dimensional 
space, also called latent space, using non-linear basis functions to 
allow for better probabilistic decision boundaries. This is achieved 
by fixing the number of basic functions in advance but allowing 
them to be adaptive via the use of parametric forms for those basis 
functions in which the parameter values are adapted/learned 
during training time [33]. All those functions are represented as a 
compute graph in a network, and their parameters are adapted via 
the use of a loss function that guides the training/update of all the 
parameters of the network during what is called back-propagation. 
For larger problems, neural networks may contain multiple layers, 
each with a predefined number of hidden neurons, stacked on top 
of each other to increase the capacity of the network. A multiple 
stacked layers network is referred to as a deep neural network or 
Deep Learning (DL) within the AI community. Figure 2 represents 
a network diagram of a two-layer neural network [33].

Figure 2: Two-layer neural network diagram. The input, hidden, and 
output variables are represented by nodes, and the weight parameters 
are represented by links between the nodes, in which the bias 
parameters are denoted by links coming from additional input and 
hidden variables x0 and z0 Arrows denote the direction of information 
flow through the network during forward propagation.
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Kernelized SVMs: Support Vector Machine (SVM) is a well-
known algorithm used for binary classification of data points. It 
is an algorithm categorized under the family of maximum margin 
classifiers. The main intuition behind the algorithm is that a wide 
margin around the dividing decision boundary makes the new 
samples more likely to fall on the correct side of the separating 
line. An important property of SVMs is that the determination 
of the model parameters corresponds to a convex optimization 
problem, and so any local solution is also a global optimum [34]. 
The objective function of SVMs is mainly solved via LaGrange 
multipliers [25] resulting in a dual function that can be re-written as 
a quadratic function which then can be solved with many efficient 
algorithms for quadratic programming problems [35]. LIBSVM 
is a widely used algorithm to solve such quadratic problems for 
SVMs and it is implemented in sklearn. svm SVC python library 
that we used in our modeling analysis. Additionally, since the 
data points may not be linearly separable (including noisy data) 
we opted for two solutions to elevate this problem: The use of 
the kernel trick [30] for non-linear decision boundaries, and the 
relaxation/punishment of the constraints by introducing slack 
variables symbolized as ε_i [36]. The above explanation is formally 
summarized in the following constrained objective function that 
will be optimized using LaGrange multipliers:

minimize   0 1
1

2
( , , )ε ε== + ΣT N

i iCf w b w w

subject to  ( ) 1 0ε+ − + >T
i i iy w x b

      0ε >i                    

Random forest: Random Forest (DF) algorithm is the third 
investigated approach to classify blockers from non-blockers [31,32]. 
It is an ensemble method of multiple decision trees used to make 
a classification decision based on the majority vote. Decision trees 
implement a greedy heuristic algorithm to build the tree using a 
top-down approach by picking the best splitting features with the 
best improvement based on a given impurity measure. An ensemble 
of decision trees usually suffers from the problem of high variance 
which may result in biased results.

To elevate this problem, we combined the decision forest with 
bagging (bootstrap aggregation) method to reduce the variance of 
the model. The main idea behind bagging is to create an ensemble 
of decision trees from randomly selected samples of data points 
from the training set with replacement. We made use of sklearn 
ensemble random forest classifier python library implementing a 
bootstrap aggregation RF [37].

Feature generation and selection

To perform statistical analysis and build our models, we needed 
numerical metrics for each molecular compound instance. The 
features used in this setting were called molecular descriptors. A 
molecular descriptor is the final result of a logical and mathematical 
procedure that transforms chemical information encoded within 
a symbolic representation of a molecule into a useful number or 
the result of some standardized experiment [38]. We made use of 
PaDEL-Descriptor v2.21, a tool implemented in Java to compute the 
molecular descriptors [17,39]. The tool takes as an input a “.smi” 
file containing the smile format of the molecular compound and 
outputs a CSV file of the set of descriptors. It currently computes 
1875 descriptors, including 1444 1D and 2D descriptors and 431 
3D descriptors, and 12 types of fingerprints (a total of 16,092 bits).

Literature manuscripts reported that 2D descriptors provide better 
predictive results, and at the same time, require less computational 

resources compared to 3D descriptors [6,40-42]. Therefore, we 
compiled only 2D descriptors using PaDEL-Descriptor v2.21 with 
a maximum runtime of 〖10〗^5 milliseconds per molecule. The 
process resulted in 1444 2D descriptors [17,39]. As the number of 
generated features was huge, feature selection and dimensionality 
reduction were required.

Feature selection for hERG dataset: As a first step of our feature 
selection procedure, we started by percent missing value analysis 
combined with information analysis of each single feature. This 
step reduced the feature space from 1444 to 1364. We followed this 
step by a pairwise correlation analysis supported by a predictive 
power strategy to decide on which feature to drop in case of 
collinearities of the features. The analysis reduced the set to 208 
features using a correlation cut-off=65%. To further reduce feature 
set, we applied LASSO as a context-dependent and an embedded 
dimensionality reduction technique. Splitting the development set 
into 80% training and 20% validation, we run a grid search to find 
the best regularization parameter λ. λ=0.01 was found to be the best 
hyper parameter. Applying LASSO on the whole development set 
of 8380 molecular compounds, the final feature space was reduced 
to 144 best features modeling the data.

Feature selection for Nav1.5 dataset: Through a percent missing 
value and an information analysis of each single feature, we reduced 
the feature space from 1444 to 551 (details in Supplementary 
Information section 3). The number of features was still high; 
therefore, a variance-based analysis was conducted as shown in 
Figure 3. The graph gives a nice representation of the importance 
of features in our data based on their variances, ranging from 
10-5 to 1021. The visual shows that an arbitrary cut-off at 1010 
would lead to 7 features to be selected. However, this analysis was 
done on the original dataset and picking such cut-off or even a bit 
lower for more features, may lead to wrong results. Also, applying 
a Principal Component Analysis (PCA) directly on this data will 
result in biased and wrong analysis, as PCA will tend to focus more 
on the features with a high variance. The 27-order of magnitude 
difference of the variances is mainly due to the drastic different 
scales of the data features and the existence of outliers. Therefore, 
standardization and normalization of our feature values proves 
itself to be crucial. We used standard scaling, also called Z-score 
normalization, in our analysis to elevate this problem:

  Z score µ
σ
−

− =
x

                            (6)

Where x is the value to be normalized,  μ is the empirical mean 
value of the column and σ is the empirical standard deviation. The 
result of the normalization transformation of the data features is 
visualized in Figure S5 available in the Supplementary Information 

Figure 3: Dev-Set-Nav variance-based analysis of the 551 features. Very 
few features exhibit very high variance, and many are very low with a 
27-order of magnitude variance difference.
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section. The figure shows how the variances of each of the 551 
features are distributed after the standard normalization applied 
using Standard Scalar library implemented in python [43]. The 
graph demonstrates that 7 features are of great importance in our 
dataset, as they exhibit the highest variance. However, since all the 
variance values fall between 0.95 and 1.05(tight range), a variance-
based feature selection is hard to make, and an arbitrary cut-off 
might still provide wrong results. Also, some of the selected features 
could be highly correlated, which would include some bias to the 
trained models. The idea is then to décor relate the system first, 
and then to base the selection of features on their energy (Figure 4).

To achieve that, we conducted an unsupervised learning study called 
Principal Component Analysis (PCA) on the entire normalized 
Dev-Set-Nav of 551 features. The results will be discussed in Nav1.5 
result section.

Training, validation, and test set splitting

To abide by QSAR and data science best practices, we applied 
different strategies of model validation for each algorithm. For 
the DL classifier, we split the development set into 90% training 
and 10% validation sets as we wanted to use most of our data 
for training. However, for the kernelized SVMs and RF training, 
we used a technique named k-fold cross-validation via scikit-learn 
library in Python [44]. 

In k-fold Cross-Validation (CV), sometimes called rotation 
estimation, the dataset D is randomly split into k mutually exclusive 
subsets (the folds) D1, D2……DK of approximately equal size. The 
inducer is trained and validated k times; each time t ∈ {1, 2,…k} it 
is trained on D\Dt and tested on Dt. After a grid-based search for 
the optimal number of folds, we opted for 10-fold cross-validation 
for our hyperparameter optimization of the sub-models, as being 
the one giving the best CV estimate of accuracy for both SVM and 
RF. The cross-validation estimate of accuracy is the overall number 
of correct classifications, divided by the number of instances in 
the dataset. It may also be seen as the mean accuracy of all the 
folds accuracies in case of stratified split. Formally, let D(i) be the 
validation set that includes instance x_i=(v_i,y_i), then the cross-
validation estimate of accuracy [45].

( )
,1 ( ( \ ), )δ

∈∑=
i i Dcv v y

i i i

n

I D D v y
AC                 (7)

Applying just a plain CV may lead to biased accuracy estimates of 
the validation set. The problem is frequently present when the data 
is not equally distributed among classes, which causes a random 
selection of k-folds to have a dominance of instances, often only 
instances, of the majority classes. Therefore, to elevate this issue, 
we used a technique called stratification for both normal training/
validation split, case of MLP, and k-fold CV, case of SVM and 

RF training. A stratified split is a split that maintains a similar 
percentage distribution of classes in the original set.

Performance evaluation metrics

As we are following the approach of one-vs-rest methodology for 
multiclass classification, we used a set of six measurements for 
binary classification during our modeling analysis evaluation to 
assess the quality of trained models:
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Where TP stands for True Positive (TP) and represents the number 
of correctly predicted blockers, TN stands for True Negative (TN) 
and represents the correctly predicted non-blockers, FP stands 
for False Positive (FP) and represents the number of non-blockers 
predicted as blockers, and FN stands for False Negative (FN) and 
counts the number of blockers predicted as non-blockers. 

Here, we want to stress on the F1 measurement, also called 
the F-score. It considers the sensitivity and the precision in its 
formula measuring the harmony of both metrics. F1 score, as a 
comprehensive statistical parameter, is considered to be a better 
evaluation criterion than accuracy when dealing with imbalanced 
datasets which is our case [40]. 

The above metrics are used in the context of binary classification. 
For multiclass classification measures, we provide a multiclass 
accuracy denoted as AC_mul and formally computed as follows: 

( )
1 ( ( ), )δ

∈∑=
i i Tmul v y

i i
n

I v y
AC                (14)

Where T is the set of instances used for evaluation containing 
observations each one denoted by the pairx_i=(v_i,y_i). Whereas, 
I function represents the inducer or the predictor, and δ is the 
indicator function returning 1 if the predicted class is matching 
the ground truth and 0 otherwise.

Whereas, for regression we considered two measurements, the Sum 
of Squared Error and the R-Squared metric:

 1
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Data labeling and sampling techniques for classification 

With multiclass classification algorithms, QSAR models were 
trained on datasets of molecular compounds labeled as follows: 
A compound with PIC50 ≥ 6 is labeled as “strong blocker”, a 
compound with 6>PIC50 ≥ 5 is labeled as “moderate blocker”, a 
compound with 5>PIC50 ≥ 4.5 is labeled as “weak blocker” and a 
compound with 4.5>PIC50 is labeled as “non-blocker”.

Figure 4: Training results of the best 2-layer network with 40N (HL). 
(a) Represents the loss change with respect to the number of epochs of 
both training and validation sets. (b) Represents the accuracy change 
with respect to the number of epochs of both training and validation 
sets. The best hyperparameter configuration is: L2-norm weight decay, 
512 batch size, ReLu as activation function, and Xavier initialization.
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Following a one-vs-rest approach to build a multiclass classifier, 
QSAR models were built and analyzed on 3 differently labeled 
development sets on each of hERG and Nav1.5 curated and 
normalized datasets. From each curated development set, we derived 
three labeled datasets by applying each time a different threshold 
based on the IC50 values of 1, 10, and 30 μM, corresponding to the 
PIC50 values of 6, 5, and 4.5, which corresponds eventually to the 
level of potency blockage intensities of strong, moderate, and weak 
blockers respectively. 

For hERG, each time we applied a different threshold, we obtained 
a different class distribution of hERG Blockers (BLK) and Non-
Blockers (NBLK). For a threshold of PIC50=6 the class distribution 
was (blk: 1596 vs. nblk: 6784). For a threshold of PIC50=5, the 
class distribution was (blk: 5116 vs. nblk: 3264). For a threshold 
of PIC50=4.5 the class distribution was (blk: 7003 vs. nblk: 1377). 
We observed the same case for Nav1.5 after applying a different 
threshold each time. We obtained imbalanced class distribution of 
Nav1.5 blockers (blk) and non-blockers(nblk). For a threshold of 
PIC50=6, the class distribution was (blk: 160 vs. nblk: 1390). For a 
threshold of PIC50=5 the class distribution was (blk: 1018 vs. nblk: 
532). For a threshold of PIC50=4.5 the class distribution was (blk: 
1442 vs. nblk: 108).

To distinguish which development set was used for building 
a particular model, the 〖PIC〗_50 potency value applied for 
compounds tagging on the dataset was attached to the ML algorithm 
used (ex. ‘6RF’ means that the random forest is trained on a dataset 
labeled according to a cut-off of PIC50=6. For the two thresholds 
of 6 and 4.5, the class distributions were very imbalanced. Such 
data distributions make learning algorithms to often be biased 
towards the majority class as the algorithms main focus is trying 
to reduce the error rate without taking the data distribution 
into consideration. There exist four main ways to deal with class 
imbalances: re-sampling, re-weighing, adjusting the probabilistic 
estimate, one-class learning. In our research work, we opted for re-
sampling methodology to deal with this issue as a simple approach 
of biasing the generalization process. We wanted to analyze the 
results of both a balanced dataset and an imbalanced one. We 
tried two different approaches for this analysis: over-sampling and 
under-sampling. For over-sampling, we used the Synthetic Minority 
Over-sampling Technique (SMOTE). SMOTE generates synthetic 
examples in a less application-specific manner, by operating in 
“feature space” rather than “data space” [46]. The minority class is 
over-sampled by taking each minority class sample and introducing 
synthetic examples along the line segments joining any/all of the 
k minority class nearest neighbors. Depending on the amount of 
over-sampling required, neighbors from the k nearest neighbors are 
randomly chosen explained the synthetic generation of samples 
as follows: First, we take the difference between the feature vector 
(sample) under consideration and its nearest neighbor. Second, we 
multiply this difference by a random number between 0 and 1 and 
we add it to the feature vector under consideration. This causes 
the selection of a random point along the line segment between 
two specific features. This introduced algorithm effectively forces 
the decision region of the minority class to become more general 
[46]. The approach was applied via the imblearn over-sampling 
library in Python implementing the explained SMOTE algorithm 
[47]. Concerning under-sampling, we used near miss algorithm, a 
negative example selection method implemented in the Python 
library imblearn over-sampling [48,49]. 

RESULTS AND DISCUSSION

All computations reported in this manuscript were conducted on a 
personal workstation. The machine system memory size was 16Gib 
with an Intel® Core™ i7-8750H 8th generation CPU with 12 
logical processors and maximum speed of 3.5 GHz. The machine 
contains also a NVIDIA GeForce GTX 1050 Ti with a dedicated 
memory of 4Gib. The GPU was used for deep learning hyper 
parameter tuning (Figure 4).

hERG ML models-results and discussion

For hERG multiclass predictions, we opted for the one-vs-rest 
approach. To pick the best performing ML algorithm to use in our 
final deployed sub-models, we made our first algorithm selection 
analysis using one labeled dataset with a fairly balanced class 
distribution. The threshold of choice was PIC50=5 with a class 
distribution of 5117 hERG blockers and 3265 non-blockers.

Machine learning algorithms analysis applied on literature-based 
feature selection: For literature-based features, we gathered all the 
collections of best features compiled in and combined them in one 
unique set of best features to be used for development [6]. These 
sets of features were selected based on a greedy algorithm named 
Best-First Feature Selection method. We ended up with 191 unique 
literature-mined features, selected from the 1444 2D descriptors. 
We used the final set for training all the sub-models of our ToxTree-
hERG Classifier. This set was used to analyze and then select the 
best performing classifier algorithm to choose among the MLP, 
SVM, and RF. 

Deep learning/MLP: In our analysis, we used a grid-based search 
for hyperparameter tuning in order to find the best hyperparameter 
configuration of our simple artificial neural network to classify 
correctly the hERG blockers and non-blockers.

The search space included one single network architecture of 2 
layers (1 hidden layer of 40 neurons and an output layer of two 
neurons), fixed learning rate of 10-3, fixed L2-norm weight decay, 
2 types of activation functions (sigmoid and ReLu), 50% dropout 
rate or not, batch normalization or not, and 2 batch sizes: 256 and 
512. The search space resulted in 16 different models, all initialized 
using Kaiming (for ReLu) or Xavier (for Sigmoid) initialization [50-
52]. To select the optimal model, the best hyper parameters of the 
architecture were saved if the loss on the validation set scored lower 
than the last saved best model after a complete epoch.

Figure 4 represents the loss and accuracy results of the best 2-layer 
network found during our parameter search, after 5000 epochs. 
The curves show that the model converged around 4000 epochs, 
and the generalization gap started increasing afterwards (Figure 4a). 
The best model hyper parameters achieved a validation accuracy of 
76.1%.

Kernelized SVMs: We applied again grid-based search to identify 
the best parameters of the optimal kernelized SVM for our given 
problem using a 10-fold stratified cross-validation. The parameters 
that were used in the grid search included 4 kernel functions 
(linear, polynomial, sigmoid, and radial basis function kernel). In 
the case of a polynomial kernel, 9 degrees were investigated (from 
2 to 10). For constraints relaxation, 10 values were evaluated of the 
penalty constant C, with 5 values less or equal than 1 (0.1, 0.2, 0.5, 
0.8, 1) denoting a soft margin SVM and 5 greater than 1 (3, 5, 10, 
50, 100) denoting hard margin SVM. The Search space resulted 
in 120 different models built with 4 types of kernels. The best 
performing model achieved an ACcv of 75% with a polynomial 
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kernel of degree 2 and a penalty constant of 0.2.

Random forest: To evaluate the performance of Random Forest on 
our given training dataset, we applied a grid-based hyper parameter 
search combined with a 10-fold stratified cross-validation. The 
search space included 100 different configurations to evaluate. We 
achieved a best ACcv of 81.1% with an ensemble of 100 decision 
trees.

Best performing ML algorithm based on literature-mined features: 
Among the three evaluated ML algorithms (sections 4.1.1.1, 4.1.1.2, 
and 4.1.1.3), RF represented the best performing model with a 
validation accuracy of 81.1% compared to the kernelized SVM 
and the MLP with accuracies of 75% and 76.1% respectively. 
Therefore, to build our ToxTree-hERG Classifier model, RF with 
bootstrapping was our algorithm of choice to build our one-vs-rest 
sub-models at the three potency intensity levels.

Model building and evaluation on external test sets using 
literature-mined feature set: We conducted a grid-based search on 
a set of 11 different values starting at 10 and incrementing by 10 
for each next value to define the optimal number of estimators 
(decision trees) per RF classifier for each of the three separately 
labeled datasets. The hyper parameter search was applied using 
10-fold stratified CV technique. For each PIC50 threshold, we 
compared the results of balanced datasets with imbalanced ones. 
Applying the two previously explained sampling methods (over/
under-sampling); we reported the results in Table 1. The statistics 
include the cross validation estimate of accuracy ACcv, defined in 
eq. 7, as well as the cross validation estimate of F1-score F1CV 
computed similarly based on single folds F1-scores.

Table 1 shows the results of the best performing ensemble of 
decision trees for each labeled development set. For the threshold 
PIC50=6 we picked 6rf-ovrs model distinguishing ‘strong hERG 
blockers’ from non-blockers as being the best performing one, with 
an ACcv of 93.3%, 80-ensemble of estimators, and a maximum tree 
depth of 57. For the threshold of PIC50=4.5 tagging ‘weak-blockers’ 
and ‘non-blockers’, two models were reporting high ACcv and 
comparable F1CV. They were both selected to construct the final 
Model. Inducers 405 rf and 405 rf-ovrs reported an ACcv of 88.7% 

and 94.8%, F1CV of 93.5% and 94.7%, number of estimators per 
RF of 80 and 80, and a maximum depth of the trees of 51 and 47 
respectively. Whereas, we kept only the best performing classifier, 5 
rf-ovrs, trained on an over-sampled development set with synthetic 
samples for the PIC50=5 threshold labeled dataset to classify 
‘moderate blockers.’ 5 rf-ovrs achieved an ACcv of 85.4% with a 
maximum tree depth of 35 and an ensemble of 110 estimators.

The best hyper parameters along with best performing sampling 
techniques were used to build our final models trained on the 
entire 8380 molecular compounds for hERG liability predictions. 
Table 2 shows that our individual built models exhibit higher 
performances than all the models presented [6]. Our models 
outperformed all the models with respect to the overall accuracies 
and the F1-scores on the untouched test set EV-1 and EV-2 whereas 
the specificity values are comparable.

Comparison between literature-mined and L1-based feature 
selection methods: Before applying the L1-based sparse feature 
selection method, LASSO, we applied a set of feature reduction 
techniques. Using percent missing value analysis, we first reduced 
the number of features from 1444 to 1364. Second, we applied a 
pairwise correlation analysis supported by predictive power analysis 
to guide the filtering out of most relevant features. This analysis 
reduced the feature space to 213. Finally, for a more context-
dependent feature selection analysis, the embedded dimensionality 
reduction technique, LASSO, was applied. Splitting data to 
training and validation sets (80:20), the best MSE loss was achieved 
on the validation set at the regularization parameter alpha=0.01. 
This reduced the feature space to 152.

Comparing the classification performance of each best feature 
selection methodology (Table 3) shows that the literature retrieved 
set of features (Best-First) outperforms the L1-based sparse feature 
selection method (Pairwise correlation+LASSO), especially in terms 
of specificity and F1-score. In our modeling, we want to achieve a 
good harmony between sensitivity and specificity. We don’t want 
to favour only true positives or true negatives. Hence, literature-
based selected features represent the final set of choice in building 
ToxTree-hERG Classifier.

Table 1: The cross-validation estimate of accuracy rate ACcv and F1-score F1cv of the best performing RF model in each of the 3 differently labeled training 
datasets based on the three PIC50 cut-offs and different sampling strategies. Over/under-sampling analysis was carried out at all of the three potency 
thresholds as training data was imbalanced. ACcv and F1cv measurements were calculated following a 10-fold-stratified-cross-validation applied on the 
training dataset, i.e., computed on validation folds. The models with the best CV estimate of accuracy (eq. 7) rates are mentioned in bold. Similarly, we 
computed the CV estimate of F1-score and reported the best inducer with its corresponding number of estimators and max depth in the RF. Grid-based 
search for the optimal number of estimators was conducted on 11 different values starting at 10 and incrementing by 10 for each next value. 

PIC50 
threshold

Model short 
name

Sampling 
strategy

Development class distribution
ACcv F1cv

No.of 
estimators

Max depth
blk nblk

4.5 4o5rf Original 7003 1377 88.7 93.5 80 51

4o5rf-ovrs Over-sampling 7003 7003 94.8 94.7 80 47

4o5rf-unds Under-sampling 1377 1377 80.8 80.6 90 38

5 5rf Original 5116 3264 81.1 84.8 100 44

5rf-ovrs Over-sampling 5116 5116 85.4 85.2 110 35

5rf-unds Under-sampling 3264 3264 80.4 80.4 100 51

6 6rf Original 1596 6784 87.3 57.1 90 43

6rf-ovrs Over-sampling 6784 6784 93.3 93.2 80 57

6rf-unds Under-sampling 1596 1596 76.1 75.9 110 36
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Table 2: Prediction performance of individual best performing models on the test sets EV-1 and EV-2 compared with the state-of-the-art sub-models of the 
consensus model introduced [6].

Test set
 PIC50 

threshold
Training dataset Model AC SN SP F1 TP FN TN FP

EV-1

4.5

Original/Imbalanced 4o5 rf 88 98 58 93 166 4 30 22

4o5_RFfwd 86 99 42 91 169 1 22 30

Balanced 4o5 rf-ovrs 89 95 67 93 162 8 35 17

4o5_s1_RFfwd 82 88 62 88 149 21 32 20

Combined Combined_4o5 rf 90 98 64 94 167 3 33 19

4o5Combined 87 98 52 91 166 4 27 30

5
Original/Balanced 5 rf-ovrs 82 85 77 86 119 21 63 19

5 rffwd 77 72 84 79 101 39 69 13

6
Original/Imbalanced 6 rffwd 73 20 97 32 14 55 149 4

Balanced 6 rf-ovrs 83 57 95 67 39 30 145 8

EV-2

4.5

Original/Imbalanced 4o5 rf 96 99 83 97 211 1 54 11

4o5_rffwd 93 100 72 95 206 0 51 20

Balanced 4o5 rf-ovrs 97 99 91 98 209 3 59 6

4o5_s1_rffwd 82 80 90 87 164 42 64 7

Combined Combined_4o5 rf 96 99 88 98 210 2 56 8

4o5 Combined 94 98 85 96 201 5 60 11

5
Original/Balanced 5 rf-ovrs 89 93 86 89 125 10 122 20

5 rffwd 77 67 87 74 90 45 123 19

6
Original/Imbalanced 6 rffwd 93 50 100 67 19 19 239 0

Balanced 6 rf-ovrs 95 66 100 79 25 13 239 0

Table 3: Prediction performance of individual best performing sub-models on the test sets EV-1 and EV-2. The table compares RF models trained on the 
same labeled datasets but using different set of features, either the literature retrieved set of features (following Best-First greedy algorithm), or L1-based 
sparse selected set of features (following a pairwise correlation feature reduction followed by LASSO).

Test sets
 PIC50 

threshold
Training dataset

Feature selection 
procedure

Model AC SN SP F1 TP FN TN FP

EV-1 4.5
Original/

Imbalanced
Best-First 4o5rf 88 98 58 93 166 4 30 22

Pairwise 
correlation+LASSO

4o5rf_Lasso 84 98 38 90 166 4 20 32

Balanced/over-
sampling

Best-First 4o5rf-ovrs 89 95 67 93 162 8 35 17

Pairwise 
correlation+LASSO

4o5rf_ovrs_
Lasso

86 96 54 91 164 6 28 24

EV-2 4.5
Original/

Imbalanced
Best-First 4o5rf 96 99 83 97 211 1 54 11

Pairwise 
correlation+LASSO

4o5rf_Lasso 95 100 78 97 212 0 51 14

Balanced/over-
sampling

Best-First 4o5rf-ovrs 97 99 91 98 209 3 59 6

Pairwise 
correlation+LASSO

4o5rf_ovrs_
Lasso

96 99 86 98 211 1 56 9
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ToxTree-hERG regressor: Given the large dataset (8380 molecular 
compounds) with numerical values as a target, we have also built 
a regression model predicting the PIC50 value. The classification 
performance of the regression model, ToxTree-hERG Regressor, 
was then compared to the one of multiclass inducer, ToxTree-
hERG Classifier, on the same test set (section 4.1.7). The regression 
model was built using a Random Forest Regressor. This choice was 
supported by the fact that Random Forests are very powerful in 
depicting non-linear correlations between features; hence, further 
performing a feature selection step following another embedded 
greedy heuristic algorithm within the final regressor model. The 
best model achieved an MSE=0.59 on the evaluation set of N=499.

Figure 5 represents the performance of the regressor in predicting 
the PIC50 potency values of a molecular compound with respect to 
the ground truth values. The model is denoted as ToxTree-hERG 
Regrossor in the rest of the paper and achieves a coefficient of 
determination r2=0.67 on the test set.

ToxTree-hERG classifier: As many reports and manuscripts [6,53-
55] reported that consensus QSAR models perform better than 
individual models, we combined 405 rf and 405 rf-ovrs in a single 
model named ‘combined-405 rf’. The decision making of the 
combined-405 rf model is done as follows: First, if both 4o5rf and 
4o5rf-ovrs predictions match, the new compound is assigned the 
same class. Second, if both classes differ, we pick the class inferred 
by the model reporting the highest probability. Finally, if both 
classes and their probabilities are similar, the decision is reported 
as inconclusive. The consensus/combined model also show slightly 
higher performance than Kumar et al. combined model. To have 
a final multiclass classifier, we organized the one-vs-all hERG 
predictive models in a form of a binary tree to filter hERG blockers 
from non-blockers at the three potency thresholds. The models are 
applied sequentially in a pipeline. The final model (visualized in 
Figure 6) is denoted as ToxTree-hERG.

To briefly summarize ToxTree-hERG Classifier prediction process 
of a new molecular compound with unknow potency, we introduce 
the following steps: Given pre-computed 2D descriptors of a new 
molecular compound, we first select the 191 features used by our 

inducer system. Second, we normalize the data with the learned 
empirical mean and standard deviation. Third, we run 6rf-ovrs 
model to predict if it is a ‘strong blocker’. If it is a non-blocker, we 
run 5rf-ovrs model to evaluate if it is a ‘moderate blocker’. If it is 
a non-blocker, we run the combined_4o5rf consensus model to 
evaluate if it is a ‘weak blocker’, a ‘non-blocker’, or ‘inconclusive’.

ToxTree-hERG benchmarking evaluation: In order to benchmark 
the performance of our ToxTree-hERG classifier and regressor 
models with existing hERG liability prediction tools in the market, 
a set of selected tools were evaluated on the combined test set of 
both EV-1 and EV-2, resulting in N=499 molecular compounds to 
be assessed.

Concerning the set of tools to be analyzed, we selected 9. Four of 
which are web-based servers, namely admet SAR, CoFFer, pkCSM 
and Pred-herg. Whereas, the remaining tools are standalone 
software, namely PaDEL-DDPredictor v2.1, Schrödinger/
QikProp, Simulation plus/ADMET Predictor, Star Drop v6.4, 
and Consensus model [6,56-63]. The binary evaluation was not 
conducted in house by running all of those tools on the test set, 
but retrieved from Kumar et al. manuscript reporting the statistics. 
Some tools report/predict only the potency values. Therefore, 
and for consistency of the results, the values were all converted to 
binary classes with a threshold of less than 30 μM being a blocker 
and above as a non-blocker.

In Table 4, we notice that ToxTree-hERG Classifier is outperforming 
all the existing tools, including ToxTree-hERG Regressor, achieving 
a binary accuracy of Q2=93.2%, with an improvement of 1.2% to 
53.1%. We also notice that ToxTree-hERG Regressor shows a high 
sensitivity compared to all the other models, which is mainly due to 
the high imbalanced training set for this binary task. This problem 
is elevated in ToxTree-hERG Classifier through the re-sampling 
technique (SMOTE). Another important mechanism allowing 
ToxTree-hERG to show good results is the architecture of the 
model that filters out the potency level of a molecular compound 
via multiple sub-models trained at different cut-offs. Though the 
dataset is still the same, each sub-model is trained on a different 
distribution of data points depending on the cut-off used.

Figure 5: Regression scatter plot of the Predicted vs. Observed [PIC]_50 of our ToxTree-hERG 
Regressor model on the test set (N=499) combining both EV-1 and EV-2.
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Since we used a one-vs-all approach to discriminate hERG blockers 
from non-blockers, we can also evaluate the multiclass classification 
accuracy of our model. Figure 7 represents a multiclass confusion 
matrix at the three potency intensity levels. Using eq. 14, we 
computed the multiclass classification accuracy of ToxTree-hERG 
achieving 74.5% on the test sets of EV-1 and EV-2 both combined 
(N=499). The confusion matrix shows the power of the model in 
predicting ‘moderate blockers’ with an accuracy performance of 
83.3% while predicting ‘strong blockers’ with a lower accuracy of 
59.8%. We can also notice that a significant percentage of wrong 
classifications (purple cells) always happen in the neighboring 
classes. This is expected as we may always have data points very 
close to the decision boundaries of each sub-inducer in our model. 
As we are running the models sequentially, some of the molecular 
compounds having potency values less than the threshold or higher, 
but at the same time very close to it gets assigned to the previous 
or next class. From Table 2 we can also infer that the Consensus 
model [6] achieves a ‘strong blocker’ classification accuracy of only 
30.8%; while, we are achieving a 2x higher performance at this 
class. We again show how ToxTree-hERG Classifier outperforms 
the Consensus model in predicting strong blockers.

Nav1.5 ML models-results and discussion

Feature multicollinearity elimination: To reduce multicollinearity 
of the features, PCA was applied on the entire normalized Dev-
Set-Nav of 551 selected features using sklearn decomposition 
PCA python library [64]. The library implements Singular Value 
Decomposition (SVD) algorithm for matrix factorization. Figure 
S6 in the Supplementary Information section represents a 
visualization of the 551 Principal Components (PCs) with respect 
to their eigenvalues [65].

The graph shows that very few principal components are of great 
importance than others. However, as the visualization of the 551 
PCs is condensed and hard to analyze, we chose to display the 
first 40 PCs with respect to their eigenvalues for better analysis, 
as shown in Figure 8 [66]. The blue curve represents the strength 
(explained variance) of each PC in the projected space. While the 
orange curve represents the cumulative explained variance, which 
grows as we increase the number of PCs. The green horizontal line 
represents the cut-off (90%) we chose to decide on the number of 
principal components space to which the data will be projected.

Figure 6: ToxTree-hERG classifier conceptual visualization inference pathway.

Table 4: Comparing prediction performance of ToxTree-hERG with the existing models and tools on a combined test set of both EV-1 and EV-2.

Inducer    AC CCR MCC SN SP

admetSAR 68.1 57.2 27.9 78.7 35.8

CoFFer 40.1 51.8 20.6 28.7 74.8

PaDEL-DDPredictor 45.8 51.1 21.6 41.1 61.1

pkCSM 76.6 62.6 36.8 90.2 35

Pred-herg 70.5 77.2 49.8 64.1 90.2

Schrödinger/QikProp 75.1 58.8 30.3 90.5 27.1

Simulation plus/
ADMET Predictor

74.3 64.4 38.3 84 44.7

StarDrop 75.8 57.4 28.1 93.6 21.1

Consensus 92 87.6 78.6 96.3 78.6

ToxTree-hERG 
Regressor

86.8 72.4 60.6 99.5 45.3

ToxTree-hERG 
Classifier

93.2 86.8 80.3 98.7 75
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The intersection, the black star, shows that 90% of the energy is 
preserved at 22 principal components. Using eq. 4, we perform a 
linear transformation of our data were  represents the learned matrix 
of the first k=22 eigenvectors and X~ is the z-score normalized 
Dev-Set-Nav dataset of 551 features. The new dimensionality of 
the reduced development set is now of 22 dimensions. The new 
reduced development set is denoted as Dev-Set-Nav-Red in the 
manuscript.

Model building: As our ultimate goal from this research is to build 
a multiclass classifier (non-blocker, weak-blocker, moderate-blocker, 
and strong-blocker) for Nav1.5 liability predictions, we applied 
three of the state-of-the-art machine learning algorithms. We 
investigated the performance of deep learning, random forest, and 
a one-vs-rest approach of kernelized SVM models. All models were 
trained on the normalized Dev-Set-Nav reduced to 22 features/PCs. 
For best model selection and hyper parameter tuning, a stratified 

split of 90% training and 10% validation was used to analyze deep 
learning models, and 10-fold stratified CV was applied in case of 
RF and SVM. 

After a multiclass tagging and splitting of the Dev-Set-Nav-Red, 
SMOTE re-sampling strategy was used to elevate the problem of 
imbalanced training datasets and biasing the generalization process 
in the case of minority classes.

MLP analysis: For hyper parameters tuning, we applied grid-based 
search technique on 4 parameters (Activation Function, Dropout 
Rate, Batch Normalization, and Batch Size) where each one takes 
two different options. This resulted in 16 different configurations to 
evaluate on a 3-layer MLP of 40 hidden neurons in the first layer, 20 
hidden neurons in the second, and 4 output neurons. The training 
of all models was conducted following Kaiming initialization in 
case of ReLu activation function or Xavier initialization in case 

Figure 7: Multiclass confusion matrix of ToxTree-hERG inducer on the combined evaluation sets of EV-1 and EV-2.

Figure 8: Principal Component Analysis (PCA) of the Dev-Set-Nav dataset 551 normalized features. The graph 
represents a visualization of the first 40 Principal Components (PC), with respect to their eigenvalues, as the 
visualization of the 551 PCs will not be clear. The blue curve represents the strength (explained variance) of each 
PC in the projected space. While the orange curve represents the cumulative explained variance, which grows as we 
increase the number of PCs. The green horizontal line represents the cut-off (90%) we chose to decide on the number 
of principal components space to which the data will be projected. The intersection, the black star, shows that 90% 
of the energy is preserved at 22 principal components.
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of Sigmoid, a learning rate of 10-3, L2-norm weight decay, and 
optimized via Adam optimizer [67-70]. To pick the optimal model, 
the best hyper parameters of the architecture were saved if the loss 
on the validation set scored lower than the last saved best model 
after a complete epoch.

Table 5 shows the results of the optimal hyperparameters 
configuration of each of the 16 trained deep learning models after 
4000 epochs. After labeling, splitting, and re-sampling procedures, 
the models were trained on a balanced dataset of 3040 data points 
distributed as follows: Strong-blokers: 760, Moderate-blockers: 760, 
Weak-blockers: 760, and Non-blocker: 761. The reported statistics 
were validated on a validation set of 391 observations distributed as 
follows: Strong-blockers: 98, Moderate-blockers: 98, Weak-blockers: 
98, Non-blocker: 97. The results on the table report the multiclass 
accuracy, denoted as ACmul followed by the binary classification 
metrics where the binary accuracy is denoted as ACbin. The binary 
classification cut-off was based on a threshold of PIC50=4.5, which 
is equivalent to an IC50=30 μM.

Table 5 illustrates that ReLu activation function provides better 
performing convergence compared to sigmoid in terms of accuracy. 
For both activation functions, we notice that the choice of 
batch normalization without dropout gives better performance. 
Concerning the best performing model, we see that models 5 and 
6 have comparable binary classification (82%) and F1-score (87%); 
however, model 5 performs better in multiclass classification. 
Hence, the best MLP model of choice for our problem is model 5. 
This decision is further supported by the evaluation on the external 
test set, EV-Set-Nav, in Table 6, where model 5 scores higher in 
both binary and multiclass accuracies as well as in the F1-score, 
with 3%, 4%, and 2% improvement respectively.

RF analysis: This section analyses the performance of Random 
Forest in our development set. Here, we used RF to model a 
multiclass inducer. There are two hyper parameters to tune for 
this algorithm: the number of estimators and the maxim depth. By 
applying a 10-fold stratified cross validation training on a SMOTE 
over-sampled Dev-Set-Nav-Red, we performed a grid-based hyper 
parameter search to find the optimal number of decision trees of 
our best performing RF. In our strategy, we applied what is called 
by pre-pruning. The search space consisted of a set of 10 different 
values starting at 10 and incrementing by 10 for each next number 
of estimators to evaluate. The selection process was based on 
three metrics: the multiclass (Multiclass ACcv) and binary (Binary 
ACcv) cross-validation estimate of accuracy as well as the cross-
validation estimate of F1-score (F1cv). Those metrics are derived 
by computing the mean value of the accuracies achieved at each 
validation fold during one complete CV run and using the same 
number of estimators. The results are displayed in Table S1 under 
the Supplementary Information section. 

We noticed that when the number of estimators is above 30, 
we achieve almost the same Binary ACcv with similar〖F1〗_
cv. Concerning the Multiclass ACcv, we noticed that it keeps 
increasing slowly while increasing the number of estimators but 
still stays within a comparable range. Therefore, we chose the best 
performing Random Forest with the least number of estimators, i.e., 
30 numbers of estimators, as a form of regularization. The next step 
is to find the best maximum depth of the trees using an ensemble of 
30 estimators. The hyper parameter search is performed again via a 
10-fold stratified CV. Table S2, in the Supplementary Information 
section, shows the results of the search.

The statistics are arbitrary close to each other, in Table S2. However, 
a max depth of 24 shows the highest performance (in terms of fold 
multiclass-accuracy, binary-accuracy, and F1-score). At the same 
time, it is the most commonly found best max depth in the 10-
fold stratified CV. Therefore, a bootstrapping-based RF with 30 
estimators and a max depth of 24 will be used to build our optimal 
RF multiclass model on the entire re-sampled Dev-Set-Nav-Red.

Kernelized SVM analysis: To analyze the performance of kernelized 
SVMs in this problem, we followed a one-vs-rest approach to classify 
molecular compounds at all of the three potency levels. We applied 
grid search on the constrained convex objective function defined 
in eq. 5 to identify the best parameters of the optimal kernelized 
SVMs. The grid-based search, which was conducted following a 
10-fold stratified cross validation, counted 3 hyper parameters to 
examine:

Kernel function: 4 kernels including the linear, polynomial(poly), 
sigmoid, and radial basis function(rbf) kernel

Polynomial degree: In case of polynomial kernel, 9 degrees were 
examined (from 2 to 10)

Penalty constant C: For constraints relaxation/penalization, 10 
values were evaluated of the penalty constant C, with 5 values less 
or equal than 1 (0.1,0.2,0.5,0.8, 1) denoting a soft margin SVM 
and 5 greater than 1 (3, 5, 10, 50, 100) denoting hard margin SVM

The search space resulted in 120 different models for each of the 
original and re-sampling methods, and at each of the three potency 
thresholds. In total, to build our final classifier, we had to evaluate 
3 × 3 × 120=1080 kernelized SVM models. Each row in Table 7 
corresponds to the best performing model among the 120 models 
evaluated at a given threshold and using one of the sampling 
techniques. Each row shows the best model’s 〖Ac〗_cv and the 〖F1〗_cv 
along with the model configuration parameters. 

In Table 7, we see that the Radial Basis Function (rbf) represents the 
best performing kernel for our given problem. For both thresholds 
of PIC50=6 and PIC50=4.5, performance results between training 
on the imbalanced/original datasets and balanced ones does not 
show that we are losing much by not adding synthetic samples. 
We are already performing at a level above 85% for accuracy and 
75% for F1-score. The radial basis function seems finding a better 
generalizing decision boundary, with a quite hard margin, on the 
original sets. Hence, we are opting for 6svm and 4o5svm as the 
optimal models for our model building at this potency levels. 
Concerning the threshold of PIC50=5, training on the original 
dataset does not seem to generalize well enough compared to a 
SMOTE over-sampled training set. We see an increase by ~6% 
when adding synthetic samples to the training set.

Also, the class distribution is not skewed, where blockers represent 
double the molecular compounds of non-blockers with a fair 
number of total observations. Therefore, we opted for SMOTE re-
sampling to bias the generalization process of moderate blockers 
predictor. We chose 5svm-ovrs as the best optimal model at this 
level. The selected models were also evaluated individually on EV-
SET-NAV and proven to be highly preformat on unseen data, as 
shown in Table 8.

For our final multiclass classifier, we organized the one-vs-rest 
Nav1.5 predictive sub-models in a form of a binary tree, where 
inducers are applied sequentially, to filter Nav1.5 blockers from 
non-blockers at the three potency thresholds. The final model 
(visualized in Figure 9), is denoted as ToxTree-Nav1.5. 
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Table 5: Performance of each model in the hyperparameter search space of the four parameters (Activation Function, Dropout Rate, Batch Normalization, 
and Batch Size) on the 10% validation set. The table reports the multiclass accuracies ACmul and the binary metrics starting from the binary accuracy 
ACbin onward. The binary classification is based on the threshold of IC50=30 μM. Models in bold (Model 5 and 6) represent the best performing models. 
In ‘Dropout Rate’ and ‘Batch Normalizations’ columns, ‘-‘means that the model was trained without the use of this hyper parameter.

Model #
Activation 
function

Dropout 
rate

Batch 
normalization

Batch 
size

ACmul ACbin SN SP F1 MCC TP FN TN FP

1 ReLu 0.5 Yes 256 62.1 79.3 78.6 81.4 85.1 53.9 231 63 79 18

2 ReLu 0.5 Yes 512 61.5 78.3 78.6 77.3 84.5 50.5 231 63 75 22

3 ReLu 0.5 - 256 63.6 80.6 82 76.3 86.4 53.7 241 53 74 23

4 ReLu 0.5 - 512 62 74.9 76.9 69.1 82.2 41.7 226 68 67 30

5 ReLu - Yes 256 70.4 82.9 82.3 84.5 87.8 60.8 242 52 82 15

6 ReLu - Yes 512 69.4 82.4 82.3 82.5 87.5 59.2 242 52 80 17

7 ReLu - - 256 69.6 81.8 81.6 82.5 87.1 58.3 240 54 80 17

8 ReLu - - 512 68.5 76.7 78.2 72.2 83.5 45.9 230 64 70 27

9 Sigmoid 0.5 Yes 256 51.2 72.4 71.8 74.2 79.6 40.6 211 83 72 25

10 Sigmoid 0.5 Yes 512 50.6 72.1 71.4 74.2 79.4 40.3 210 84 72 25

11 Sigmoid 0.5 - 256 53.7 76.2 76.2 76.3 82.8 47 224 70 74 23

12 Sigmoid 0.5 - 512 55.1 75.4 76.2 73.2 82.4 44.4 224 70 71 26

13 Sigmoid - Yes 256 65.1 81.9 81.6 83.4 87 59 240 54 81 16

14 Sigmoid - Yes 512 64.8 81.3 80.6 83.5 86.7 57.9 237 57 81 16

15 Sigmoid - - 256 83.9 80.8 80.6 81.4 96.3 56.3 237 57 79 18

16 Sigmoid - - 512 63.5 80.6 81 79.4 86.2 55 238 56 77 20

Table 6: Performance of the comparable models 5 and 6 on the test set. Model 5 still proves to be the optimal.

Model # ACmul ACbin SN SP F1 MCC TP FN TN FP

5 69.6 79.8 81.4 58.3 88.2 24.6 131 30 7 5

6 65.4 76.3 78.9 41.7 86.1 12.5 127 34 5 7

Table 7: The best performing model, among the 120 models evaluated at each given threshold and using one of the sampling techniques. In ‘Degree’ 
column ‘-’ represents the model does not take a degree parameter.

PIC50 
threshold

Model short 
name

Sampling 
strategy

Development class 
distribution ACcv F1cv Kernel

Penalty 
constant

Degree
blk nblk

4.5 4o5svm Original 1442 108 87.8 88.6 rbf 5 -

4o5svm-ovrs Over-sampling 1442 1442 88.2 88.1 rbf 3  

4o5svm-unds
Under-

sampling
108 108 80.3 78.8 rbf 10 -

5

5svm Original 1018 532 76.7 80 poly 0.2 3

5svm-ovrs Over-sampling 1018 1018 82.5 83.1 rbf 10 -

5svm-unds
Under-

sampling
532 532 77.8 77.3 rbf 100 -

6

6svm Original 160 1390 85.6 75.3 rbf 5 -

6svm-ovrs Over-sampling 1390 1390 88.5 88.5 rbf 3 -

6svm-unds
Under-

sampling
532 532 79.3 79.7 rbf 5 -

Table 8: Prediction performance of best individual kernelized SVM models on the evaluation set.

Model AC SN SP F1 TP FN TN FP

4o5svm 85 85 83 91 137 24 10 2

5svm-ovrs 83 86 80 87 98 16 47 12

6svm 83 72 84 47 13 5 131 24
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A new test molecule with unknown Nav1.5 potency will be 
evaluated by ToxTree-Nav1.5 model as follows: Given the extracted 
2D descriptors using PaDEL-descriptors, we first, extract the 
relevant 2D descriptors, normalize those features, and then apply 
a linear transformation to perform dimensionality reduction. 
Once, we have the final 22-dimensional vector embedding of the 
compound, the three selected best performing SVM models (6svm, 
5svm-ovrs, and 4o5svm) are applied sequentially in the given order. 
If the molecular compound is filtered out by one model as a non-
blocker, it will be passed on to the following model, for further 
evaluation, in the pipeline. However, if the compound is predicted 
as a Nav1.5 blocker, it will be described as either ‘Strong blocker’, 
‘Moderate Blocker’, or Weak blocker’ according to the model that 
took the decision in the order of the pipeline respectively.

ToxTree-Nav1.5 regressor: Similarly to hERG advanced data 
analytics, we have also built a regression model, on the 1550 unique 
set of molecular compounds, predicting their PIC50 potency value. 
The classification performance of the regression model, ToxTree-
Nav1.5 Regressor, was then compared to the one of multiclass 
inducer, ToxTree-Nav1.5 Classifier, on the same test set (section 
4.2.4). 

A ridge regression model was compared to a random forest regressor. 
The random forest regressor achieved higher performance on the 
cross-validation estimate of MSE. The best model achieved an 
MSE=0.26 on the evaluation set of N=173. 

Figure S7 in the supplementary information represents the 
performance of our regressor in predicting the PIC50 potency 
values of molecular compounds with respect to the ground truth 
values. The model is denoted as ToxTree-Nav1.5 Regrossor in 
the rest of the paper and achieves a coefficient of determination 
r2=0.71 on the test set.

Comparative prediction performance of the four nav1.5 models: 
While comparing performances of the four Nav1.5 models (MLP, 
RF, ToxTree-Nav1.5 Regressor, and ToxTree-Nav1.5 Classifier), we 
notice that the one-vs-rest approach is outperforming the other 
three in the binary classification task. Concerning ToxTree-Nav1.5 
Regressor, the performance results were better than expected. 
The composite descriptors created by the linear transformation 
step captured well the embedded information of our dataset. All 
of the four models were compared on the same test set of N=173 
molecular compounds labeled at the threshold PIC50=5.

The observation on the one-vs-rest approach can also be derived 
from the performances reported in Table 7, where we see the binary 
cross validation estimate of accuracy of the three selected models 
scoring as high as 85% with higher F1-scrores. Furthermore, the 
sub-models selected to build the final inducer were trained mainly 
on original labeled datasets compared to the RF and MPL that 
were trained on SMOTE re-sampled datasets to achieve their best 
performances. Therefore, our best final deployed model will be 
ToxTree-Nav1.5 Classifier. This decision is further supported by the 

Table 9: Comparing prediction performance of ToxTree-Nav1.5 with MLP and RF best models on the unseen test set EV-Set-Nav.

Inducer Multi AC AC CCR MCC SN SP F1
TP, FN, TN, 

FP

MLP 69.6 80.9 76.5 56.2 90.4 62.7 86.2 103, 11, 37, 22

RF 70.3 82.1 79 59.4 88.6 69.5 86.7 101, 13, 41, 18

ToxTree-Nav1.5 
Regressor

- 75.7 73.8 46.9 79.8 67.8 81.2  91, 23, 40, 19

ToxTree-Nav1.5 
Classifier

74.9 86.7 86.2 71.2 87.7 84.7 89.7 100, 14, 50, 09

Figure 9: ToxTree-Nav1.5 classifier conceptual visualization inference pathway.
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evaluation of the three models on the unseen test set EV-Set-Nav 
(N=173). Table 9 confirms the final decision of our best model. The 
performance of ToxTree-Nav1.5 Classifier shows an improvement 
of 4% to 6% for binary classification and higher performance in the 
rest of the binary metrics. Concerning multiclass classification, our 
selected final model demonstrates an out-performance to both the 
Random Forest and the deep learning model with an improvement 
of more than 4%.

CONCLUSION

Cardiac ion channels are a group of voltage-gated channels that 
function collectively and in full harmony to generate the action 
potential, which is needed for cardiac cells’ contraction. The ionic 
currents produced by the hERG and Nav1.5 ion channels form a 
major component of the cardiac action potential and blocking these 
channels by small molecule drugs can lead to severe cardiovascular 
complications. This rising concern has pushed scientists and 
researchers to look for new methods to identify hERG and Nav1.5 
blockers. The recent exponential increase of bioactivity data on 
these channels makes them well-suited to build robust machine 
learning models to predict their liability. Most research work in 
the field has focused only on one cardiac ion channel, namely 
hERG. Here, we describe two models to predict both hERG and 
Nav1.5 drug-mediated liability. Our ML models used two large 
manually curated datasets of size 8380 and 1550 for hERG and 
Nav1.5, respectively. The two sets hold potency information of the 
two targets and were used to build 2D descriptor-based multiclass 
classification inducers at three different potency cut-offs (i.e. 1 
μM, 10 μM and 30 μM). The first model, named ToxTree-hERG 
Classifier, represents an ensemble of Random Forest models 
applied sequentially to predict the inhibition of a new compound 
with unknown potency. The second model, named ToxTree-Nav1.5 
Classifier consists of a set of one-vs-rest carefully trained kernelized 
SVM sub-models run sequentially to filter out the potency level 
of a compound. The hERG model was evaluated on an external 
test set of N=499 compounds achieving a binary performance of 
Q2=93.2% and a multiclass accuracy of Q4=74.5%. The model 
was also benchmarked to existing tools and inducers showing an 
improvement of 1.2% to 53.2% in classifying blockers from non-
blockers, beating the state-of-the-art consensus model. Whereas, 
the first Nav1.5 liability predictive model was evaluated on an 
external balanced test set of 173 unique compounds extracted from 
PubChem. Three different robust models were built and analysed 
for best final model selection, namely a MLP, a multiclass RF, 
and a pipeline of kernelized SVMs (ToxTree-Nav1.5 Classifier). 
ToxTree-Nav1.5 AI was selected as the best classifier model as most 
of the sub-models were trained on original datasets, without any 
re-sampling techniques needed. Also, the selected model beats the 
other two classification models in binary classification and achieves 
a comparable Q4 performance with RF while outperforming the 
MLP. The final model yielded a binary classification performance 
of Q2=86.7% and a multiclass accuracy of Q4=74.9%.
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