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Abstract
A series of copper (II) complexes of bidentate azo rhodanine ligands (HLn) have been synthesized and 

characterized. The IR spectral and thermogravimetric analysis are used to characterize the isolated complexes. 
X-ray diffraction patterns show polycrystalline nature for as-synthesized ligand HL2 and its complex. Quantum 
chemical parameters, absolute hardness, global electrophilicity and additional electronic charge were calculated for 
HLn. Copper(II) complexes (1-4) are tested against four local bacterial species; namely two Gram positive bacteria 
(Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella 
pneumoniae) and against four local fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum 
and Alternaria alternata). The tested complexes have good antibacterial activity against Staphylococcus aureus 
and Escherichia coli and have low antifungal activity against Aspergillus niger, Fusarium oxysporium and Alternaria 
alternata. We found that the complex (3) is more active than other complexes against Staphylococcus aureus and 
Escherichia coli as expected from Hammett’s substituent coefficients (σR). Ultrastructure studies of the affected 
Staphylococcus aureus and Escherichia coli confirmed that complex (3) has bactericidal effect. 
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Introduction
Azodyes play also an important role in inorganic chemistry, as 

they easily form stable complexes with most transition metal ions 
[1-5]. The behavior of azodye complexes have attracted the attention 
of the bioinorganic chemists, since a number of these complexes are 
recognized to serve as models for biologically important species [3-7]. 

Azo compound based on rhodanine, play a central role as chelating 
agents for a large numbers of metal ions, as they form a stable six- 
member ring after complexation with a metal ion and also it could be 
used as analytical reagents [8,9]. The complex-formation equilibria 
have been reported for several kinds of rhodanine derivatives [10-13]. 
Potentiometry, conductivity and spectroscopy measurements on the 
coordination ability biologically important azo derivatives have shown 
that their complexes are very stable.

Chemical properties of rhodanine and its derivatives are of interest 
due to coordination capacity also widely prepared and studied several 
metal complexes of rhodanine azodyes due to their unusual magnetic 
properties and relevance to biological system [1,2,14,15]. Rhodanine 
and its derivatives are known to possess biological activities such as 
anticancer, antimiotic, antidiabetic, antibacterial, hypocholesterolemic, 
antiperlipemic, antiviral and antidiabetic in nature and also 
reported rhodanine derivatives as Hepatitis C Virus (HCV) protease 
inhibitor [16-19]. The antimicrobial activity results of rhodanine azo 
compounds have been compared with the standard antibacterial and 
antifungal drugs and the results showed that most of these ligands are 
good antibacterial agents against Bacillus cereus and Staphylococcus 
aureus and antifungal agents against Aspergillus niger and Fusarium 
oxysporium [14].

The aim of the present work is the synthesis of Cu(II) complexes 
of bidentate azo rhodanine ligands (HLn). The IR spectral and 
thermogravimetric analysis are used to characterize the purpose of 

structural elucidation. The activation thermodynamic parameters 
were calculated using Coats–Redfern and Horowitz-Metzger methods. 
Study of the antimicrobial activity of Cu(II) complexes as well as the 
ultrastructural effect of complex (3) on Staphylococcus aureus and 
Escherichia coli were recorded.

Experimental 
The structures of the ligands can exist in three tautomeric forms as 

shown in Figure 1.

Preparation of complexes

A hot ethanolic solution containing the azodyes (HLn) was mixed 
with a hot ethanolic solution of Cu(OAc)2.H2O (1 mmol) [4]. The 
mixture was then refluxed on a water bath for ~10 h and allowed to 
cool whereby the solid complexes were separated, which filtered off, 
washed several times with ethanol, dried and kept in a desiccator over 
dried CaCl2.

Measurements

Elemental microanalyses of the separated complexes were 
determined on Automatic Analyzer CHNS Vario ELIII, Germany. X-ray 
diffraction analyses of the powder HL2 and its complex [Cu(L2)(OAc)
(OH2)].2H2O (4) were performed at room temperature by a Philips X-ray 
diffractometer equipped with utilized monochromatic Cu Kα radiation 
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(λ=1.5418 Å). The X-ray tube voltage and current were 40 kV and 30 
mA, respectively. The 1H NMR spectrum was obtained with a JEOL 
FX90 Fourier transform spectrometer with DMSO-d6 as the solvent 
and TMS as an internal reference. The infrared spectra were recorded as 
KBr discs using a Perkin-Elmer 1340 spectrophotometer. The magnetic 
moment of the prepared solid complexes was determined at room 
temperature using the Gouy’s method. Mercury(II) (tetrathiocyanato)
cobalt(II), [Hg{Co(SCN)4}], was used for the calibration of the Gouy’s 
tubes. Diamagnetic corrections were calculated from the values given 
by Selwood [20] and Pascal’s constants. Magnetic moments were 
calculated using the equation, µeff=2.84 [TχM

coor]1/2. Thermogravimetric 
Analysis (TGA) measurements were investigated using Simultaneous 
Thermal Analyzer (STA) 6000 with scan rate 15°C/min under dynamic 
nitrogen atmosphere in the temperature range from 50 to 800°C. 

The molecular structures of the investigated compounds were 
optimized initially with PM3 semiempirical method so as to speed 

up the calculations. The resulting optimized structures were fully re-
optimized using ab initio Hartree–Fock (HF) [21] with 6-31G basis 
set. The molecules were built with the Gauss View 3.09 and optimized 
using Gaussian 03W program [22]. The corresponding geometries 
were optimized without any geometry constraints for full geometry 
optimizations. Frequency calculation was executed successfully, and no 
imaginary frequency was found, indicating minimal energy structures.

Microbiological investigation

For this investigation the agar well diffusion method was applied 
[14]. The antibacterial activities of the investigated complexes were 
tested against two local Gram positive bacterial species (Bacillus cereus 
and Staphylococcus aureus) and two local Gram negative bacterial 
species (Escherichia coli and Klebsiella pneumoniae) on nutrient agar 
medium. Also, the antifungal activities were tested against four local 
fungal species (Aspergillus niger, Alternaria alternata, Penicillium 
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Figure 1: Structure of azodye rhodanine derivatives (HLn).
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Figure 2: Geometry optimized structures of the investigated ligands (HLn).   
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italicum and Fusarium oxysporium) on DOX agar medium. The 
concentrations of each solution were 50 µg/ml, 100 µlg/ml and 150 µg/
ml. By using a sterile cork borer (10 mm diameter), wells were made 
in agar medium plates previously seeded with the test microorganism. 
200 µl of each compound was applied in each well. The agar plates were 
kept at 4°C for at least 30 min. to allow the diffusion of the compound 
to agar medium. The plates were then incubated at 37°C or 30°C for 
bacteria and fungi, respectively. The diameters of inhibition zone were 
determined after 24 h and 7 days for bacteria and fungi, respectively. 
Penicillin and miconazole were used as reference substances against 
bacteria and fungi, respectively.

For electron microscopic study, 18 hour of Staphylococcus aureus 
and Escherichia coli were subjected to 150 µg/ml of complex (3) for 2 
hours. Also, normal bacteria and DMF treated bacteria were included. 
After that, bacterial cells were centrifuged and washed with distilled 
water. Bacteria were fixed with formalin-glutaraldehyde fixative 
(4F1G) in 0.1 M phosphate buffer pH 7.4. After rinsing in the buffer, 
samples were post-fixed in 2% OsO4 for 2 h at 4°C in the same buffer. 
The cells were washed and dehydrated at 4°C through a graded series 
of ethanol. Cells were then treated with propylene oxide solution and 
embedded in a mixture of 1:1 of Epon-Araldite for 1 h. Polymerization 
was done in the oven at 65°C for 24 h. Ultrathin sections (50 μm) were 
cut on ultratome (Model LKB), then mounted on copper grids, double 
stained with uranyl acetate and lead citrate and investigated on a JEOL 
100CX TEM.

Morphometric analyses

Morphometric analyses were achieved by using UTHSCSA Image 
tool software for windows version 3.

Statistical analysis 

All the data of morphometric analysis was expressed as Mean ± 
SE. The statistical significance was evaluated by ANOVA using SPSS 
Version 10 and the individual comparison were obtained by LSD 
method at 0.05 significant levels. 

Results and Discussion
Structure of the ligand

The geometrical structures of the investigated ligands (HLn) with 
the optimized bond lengths are shown in Figure 2. The optimized 
molecular structures, the highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital (LUMO) of the 
investigated ligands (HLn) are shown in Figure 3. 

Quantum chemical parameters of ligands are obtained from 
calculations such as energy of the highest occupied molecular orbital, 
EHOMO, energy of the lowest unoccupied molecular orbital, ELUMO, 
energy gap, ΔE, and dipole moment, μ, as presented in Table 1. 
Additional parameters such as separation energies, ∆E, absolute 
electronegativities, χ, chemical potentials, Pi, absolute hardness, η, 
absolute softness, σ, global electrophilicity, ω, global softness, S, and 
additional electronic charge, ∆Nmax, have been calculated according 
to the following equations [4,23]:

HOMOLUMO EEE −=∆                                     (1)                          

2
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=χ                    (2)
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The lower value of energy gap (ΔE), indicates the more stable 
ligand and highly reactive than the other ligands [24]. The concepts 
of the parameters χ and Pi are related to each other. The inverse of the 
global hardness is designated as the softness [4]. From the obtained 
data (Table 1) we can deduced that:

Absolute hardness (η) and softness (σ) are important properties to 
measure the molecular stability and reactivity. The values of ∆Nmax for 

 

 

Figure 3: HOMO and LUMO molecular orbital of ligands (HLn).
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the different types of hydrogen bonding which are favorable to exist in 
the molecule under investigation:

1) Intramolecular hydrogen bond between the nitrogen atom of 
the –N═N- system and hydrogen atom of the hydroxy hydrogen atom 
(Figure 1C). This is evident by the presence of a broad band centered 
at 3460 cm-1.

2) Hydrogen bonding of the OH…N type between the hydroxy 
hydrogen atom and the N-ph group (Figure 1C).

3) Intermolecular hydrogen bonding is possible forming cyclic 
dimer through NH…O═C (G), OH…N═N (F) or OH…OH (E) 
(Figure 1).

Infrared spectra of complexes and nature of coordination

The bonding of the metal ion to the ligand can be clarified by 
comparing the IR-spectra of the complexes with those of the ligands.

In the IR spectra of all metal complexes (1-4) a number of changes 
are observed:

1) The appearance of a new bands around ~ 3380 cm-1 and two 
sharp bands at ~ 715 and 420 cm-1, the latter two can be assigned to 
the wagging and rocking modes of vibration of the water molecule, 
respectively, [28] in the prepared complexes (1-4) may be taken as a 
strong evidence for the presence of coordinated water. 

2) The N═N stretching frequency of the azo groups is shifted to 
lower frequency by ~15-25 cm-1 due to the involvement of one of the 
azo nitrogen atoms in coordination with metal ion [2-4]. This lowering 
of frequency can be explained by the transfer of electrons from nitrogen 
atom to the Cu(II) ion due to coordination.

3) In solution and in the presence of Cu(II) ions these compounds 
exist in a tautomerism equilibrium [4,5] A↔B↔C (Figure 1). The 
tautomeric form (C) react with metal ions by loss of phenolic proton as 
mononegative chelating agents producing of CO/OH mode of the free 
ligands [4,29]. 

4) Furthermore, the bands in the regions 545-560 and 420-428 
cm-1 can be assigned to the stretching modes of the metal to ligand 
bonds, υ(Cu–O) and υ(Cu–N) for 1:1 (M:L) complexes, respectively, 
[4]. Absence of υ(M-S) band in the far IR spectra gives added evidence 
for the non-participation of ring sulphur atom in bond formation.

On the basis of all these data, the molecular structure of the Cu(II) 
complexes could be suggested based on :

i) the presence of anion, ii) the disappearance of C=O, iii) the 
coordination of azo-group iv) the presence of water.

According to the structure shows in Figure 5 and analytical data in 
Table 2, the ligand (HLn) takes its usual anionic form (Ln) to chelate 
Cu(II) through N– of azo group with enol group (Figure 1C) as the 
potential binding sites. The analytical data agree satisfactory with the 
expected formulae represented as given in Figure 5.

HLn are calculated and found to be in the range 0.744-1.022 dependent 
on the nature of the substituent. They tend to the increase according to 
the following order p-(OCH3<CH3<H<Cl<NO2). This is in accordance 
with that expected from Hammett’s constant coefficients (σR) as shown 
in Figure 4.
1H NMR spectra

The 1H NMR spectra of azodye rhodanine derivatives are in 
agreement with the proposed structures. Signal for CH (~4.42 ppm), 
favoring formation of an intramolecular hydrogen bond with the–
N═N–(azodye) group. Electron-withdrawing substituents reduce the 
intramolecular hydrogen bond as indicated by the marked shift of 
the hydroxyl signal to higher field in the p-NO2 and p-Cl compounds. 
Electron-donating substituents give the opposite effect, arising from 
the increasing basicity of the azo-nitrogen. The broad signals assigned 
to the OH protons at ~11.36-11.88 ppm are not affected by dilution.

Infrared spectra of ligands (HLn)

The infrared spectra of ligands (HLn) give two bands at ~3200-3040 
cm-1 due to asymmetric and symmetric stretching vibrations of N-H 
group and intramolecular hydrogen bonding NH…O systems (Figure 
1D), respectively. 

The broad absorption band located at ~3400 cm-1 is assigned to 
νOH. The low frequency bands indicate that the hydroxy hydrogen 
atom is involved in keto ↔ enol (A↔B) tautomerism through 
hydrogen bonding (Figure 1C). 

The infrared spectra of ligands shows medium broad band located 
at ~3460 cm-1 due the stretching vibration of some sort of hydrogen of 
hydrogen bonding. El-Sonbati et al. [4,25-27] made detailed studies for 

Compound EHOMO (a.u) ELUMO (a.u) ΔE (a.u) µ  (D) T.E(a.u) χ  (a.u) η  (a.u) σ  (a.u)-1 Pi  (a.u) S  (a.u)-1 ω   (a.u) ∆Nmax

HL1 -0.327 0.048 0.375 5.358 -1491.580 0.139 0.188 5.333 -0.139 2.667 0.052 0.744
HL2 -0.337 0.047 0.384 4.554 -1416.775 0.145 0.192 5.208 -0.145 2.604 0.055 0.755
HL3 -0.348 0.044 0.432 3.950 -1377.752 0.152 0.196 5.102 -0.152 2.551 0.059 0.776
HL4 -0.355 0.034 0.389 2.001 -1836.627 0.161 0.195 5.141 -0.161 2.571 0.066 0.825
HL5 -0.367 -0.004 0.363 3.712 -1581.099 0.186 0.182 5.509 -0.186 2.755 0.095 1.022

Table 1: The calculated quantum chemical parameters of the investigated ligands (HLn).
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Figure 4: The relation between Hammett’s substituent coefficients (σR) versus 
∆Nmax for ligands (HLn).
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Magnetic measurements and electronic spectra were conducted in 
order to obtain information about the geometry of the complexes. The 
magnetic susceptibility values (1.83-1.87 B.M.) which was consistent 
with presence of a single unpaired electron [4]. This behavior suggest 
square planar geometry for the Cu(II) complexes [4]. 

The analytical data of ligands and their complexes agree satisfactory 
with the expected formulae represented as given in structures (Figures 
1 and 5).

X-ray diffraction

The X-ray diffraction, XRD, patterns of the as-synthesized ligand 

HL2 and complex (4) powder forms are shown in Figure 6. Many 
peaks are observed which indicate the polycrystalline nature of the as-
synthesized ligand HL2 and complex (4). The average crystallite size (ξ) 
can be determined using by Debye-Scherrer equation [30-32]:

θβ
λξ
cos

 
2/1

K
=

where λ is X-ray of wavelength (1.541874 Å), K is constant taken as 
0.95 for azo compounds [31], β1/2 is the full width at half maximum 
height and θ is Bragg angle. The dislocation density, δ, is the number of 
dislocation lines per unit area of the crystal. The value of δ is related to 
the average particle diameter (ξ) by the relation [32,33]:

2

1
ξ

δ =

The values of ξ are calculated and found to be 283 and 180 nm for 

S

C

NH

S

.2H2OH2O

OAc

N
N

Cu O

R

Figure 5: The structure of the Cu(II) complexes.
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Complex μeff
B.M.

Calc. (Exp.)%
     C                                                    H N  S M

[Cu(L1)(OAc)(OH2)].2H2O 
(1)

1.83 32.54
(32.47)

3.84
(3.72)

9.49
(9.13)

14.46
(14.07)

14.36
(14.06)

[Cu(L3)(OAc)(OH2)].2H2O 
(2)

1.85 33.76
(33.60)

3.99
(3.82)

9.85
(9.46)

15.01
(14.86)

14.90
(14.72)

[Cu(L5)(OAc)(OH2)].2H2O 
(3)

1.87 32.00
(31.86)

3.64
(3.44)

10.18
(9.87)

15.51
(15.27)

15.40
(15.17)

[Cu(L2)(OAc)(OH2)].2H2O 
(4)

1.84 28.51
(28.40)

3.02
(2.89)

9.07
(8.78)

13.82
(13.65)

13.72
(13.47)

Table 2: Analytical and magnetic moments of Cu(II) complexes.
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HL2 and complex (4), respectively. The values of δ are 1.25×10-5 and 
3.09×10-5 nm-2 for HL2 and complex (4), respectively.

Thermal analyses

Thermogravimetric analysis of ligands (HLn): The 
Thermogravimetric Analysis (TGA) data of ligands (HLn) is represented 
in Table 3. The Differential Scanning Calorimetry (DSC) curves exhibit 
a series of thermal changes during the increase of temperature. The 
TGA and DSC curves for HLn (where n=1, 3 and 5) are shown in Figure 7.

The DSC curves for HLn are shown in Figure 7(a-c). For the HL1 

ligand the recorded DSC curve show only one exothermic peak at 
220°C. Simultaneously, the recorded DSC curve of the HL3 ligand 
show two exothermic and endothermic peaks at 190°C and 180°C, 
respectively, while the recorded DSC curve of the HL5 ligand show two 
exothermic and endothermic peaks at 245°C and 120°C, respectively 
[34].

Thermogravimetric analysis of complexes: The thermal analysis 
of the Cu(II) complexes was studied by TGA technique to give more 
information on the structure of the investigated complexes. The TGA 
data for the [CuLn(OAc)(OH2)].2H2O complexes (n=1,2,3, and 5) 
are summarized in Table 4. It can be seen that the TGA curves of the 
complexes [CuLn(OAc)(OH2)].2H2O complexes, pointed to that the 
dehydration process of two lattice occurs within the temperature range 
~ 45-189°C. However, the dehydration of one coordinated H2O and 
one acetate group take place in one step and in the temperature range 
~ 189-331°C as shown in Figure 8. 

Calculation of activation thermodynamic parameters

The thermodynamic activation parameters of decomposition 
processes of complexes namely activation energy (Ea), enthalpy (ΔH*), 
entropy (ΔS*), and Gibbs free energy change of the decomposition 
(ΔG*) are evaluated graphically by employing the Coast-Redfern [35] 
and Horowitz-Metzger [36] methods.

Coast-Redfern equation:

The Coast-Redfern equation, which is a typical integral method, 
can represent as:

( )
2 exp0 1 1

t
Ta Edx A a dn T RTφα

 
  
 

∫ = ∫ −
−

                  (7)    

Compound First stage Second  stage Third  stage Remaining Weight 
after 650ºCTemperature  (ºC) Weight loss (%) Temperature  (ºC) Weight loss (%) Temperature  (ºC) Weight loss (%)

HL1 200 61.9 320 38.1 - - Ash
HL3 145 59.8 400 39.9 - - Ash
HL5 112 5.4 225 33.6       284 58.7 Ash

Table 3: Weight losses percentage of HL1, HL3 and HL5.

Complexa Temp. range (ºC) Found mass loss (calc.) % Assignment
(1) 45-189 7.24 (8.13) Loss of two water molecules in outside of the coordination sphere.

189-331 16.67 (17.39) Loss of one coordinated water molecule and one coordinated acetate group.
331-506 24.43 (24.17) Further decomposition of a part of the ligand (C7H7O).
506-709 14.38 (14.46) Evolution of SO2 gas leaving CuO residue with contaminated carbon atoms.

(2) 45-178 7.91 (8.73) Loss of two water molecules in outside of the coordination sphere.
178-273 18.61 (18.66) Loss of one coordinated water molecule and one coordinated acetate group.
273-514 18.06 (18.42) Further decomposition of a part of the ligand (C6H4).
514-560 6.64 (6.79) Evolution of N2 gas. 
560-640 15.43 (15.51) Evolution of SO2 gas leaving CuO residue with contaminated carbon atoms.

(3) 45-189 4.15 (7.87) Loss of two water molecules in outside of the coordination sphere.
189-288 16.72 (16.83) Loss of one coordinated water molecule and one coordinated acetate group.
288-400 10.46 (10.05) Evolution of NO2 gas.
400-592 13.72 (13.98) Evolution of SO2 gas. 
592-670 22.44 (22.73) Decomposition of a part of the ligand (C6H4N2) leaving CuO residue with contaminated carbon atoms.

(4) 40-189 5.22 (8.44) Loss of two water molecules in outside of the coordination sphere.
189-316 18.00 (18.05) Loss of one coordinated water molecule and one coordinated acetate group.
316-533 20.47 (21.33) Further decomposition of a part of the ligand (C7H7).
533-670 15.45 (15.00) Evolution of SO2 gas and CuO residue with contaminated carbon atoms.

aNumbers as given in Table 2 
Table 4: Thermal analyses data of the Cu(II) complexes.
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Figure 8: TGA curves for Cu(II) complexes.
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For convenience of integration, the lower limit T1 usually taken as 
zero. This equation on integration gives:                                                     

 2

ln(1 )ln lna

a

E AR
T RT E

α
φ
 − − = − +      

                  (8)

A plot of left-hand side (LHS) against 1/T. Ea is the energy of 
activation and calculated from the slop and A in (s-1) from the intercept 
value. The entropy of activation ΔS* in (J K-1 mol-1) calculated by using 
the equation:                                                                                     

* 2.303 log R
B s

AhS
k T

  
∆ =   

   
                 (9)

where kB is the Boltzmann constant, h is the Plank’s constant and Ts is 
the TG peak temperature. 

Horowitz-Metzger equation:

The Horowitz-Metzger equation is an illustrative of the 
approximation methods. These authors derived the relation:

11 (1 )log 21 2.303

n Ea
n RTs

θα 
 
 
 

−− − =−
, for n# 1                (10)

when n = 1, the LHS of equation 10 would be log[-log(1-α)]. For a first 

order kinetic process, the Horowitz-Metzger equation may write in the 
form:

log log log2.30322.303
W
W RTs

Eaθα
γ

  
      

= −                   (11)

where θ=T-Ts, wγ=wα-w, wα=mass loss at the completion reaction; 
w=mass loss up to time t. The relation between log [log (wα/wγ)] and 
θ was found linear from the slope of which Ea was calculated. The pre-
exponential factor, A, calculated from equation:

2

exp

a

s a

s

E A
RT E

RT
φ

=
  

−  
   

                                  (12)

The entropy of activation, ΔS*, is calculated from equation 9. The 

enthalpy activation, ΔH*, and Gibbs free energy, ΔG*, calculated from: 
*

aH E RT∆ = −                     (13)

*** STHG ∆−∆=∆                   (14)

The calculated values of Ea, A, ΔS*, ΔH* and ΔG* for the 
decomposition steps for ligands (HLn) and their complexes (1-4) are 
summarized in Table 5. It is clear from these results that the change of 
substituent strongly affects the activation thermodynamic parameters.

Compounda Decomposition
temperature (°C)

Method Parameter Correlation 
coefficient

(r)
Ea

(KJ mol−1)
A

(s−1)
∆S*

(J mol-1 K-1)
∆H*

(KJ mol−1)
∆G*

(KJ mol−1)
HL1 211-346 CR 45.8 7.58×101 -214 41.2 159 0.99221

HM 53.6 4.18×102
-200 49 159 0.99398

498-624 CR 180 4.43×108 -87.9 174 247 0.99355
HM 193 6.40×109 -65.8 186 241 0.99169

HL3 158-401 CR 46.9 7.11×101 -215 42.3 161 0.99322
HM 48.4 1.17×102 -210 43.8 160 0.99788

502-643 CR 162 2.34×107 -113 155 250 0.98442
HM 173 2.50×108 -92.2 166 245 0.99156

HL5 225-271 CR 329 2.54×1030 333 325 151 0.99453
HM 338 1.70×1032 367 333 142 0.99452

443-630 CR 108 1.51×104 -173 101 242 0.99432
HM 120 2.05×105 -152 113 236 0.9939

(1) 142-240 CR 70.9 5.53×105 -139 67.1 131 0.99122
HM 80.8 1.40×107 -112 76.9 129 0.98595

301-418 CR 102 1.31×106 -134 96.5 181 0.99104
HM 114 2.10×107 -111 108 179 0.99064

(2) 127-372 CR 31.2 3.31×100 -240 26.9 152 0.99523
HM 39.2 3.59×101 -220 34.9 150 0.98744

496-715 CR 108 1.59×104 -173 101 254 0.98712
HM 119 5.78×104 -163 112 255 0.98669

(3) 189-292 CR 106 3.74×108 -85.3 102 146 0.99596
HM 115 7.73×109 -60.0 111 142 0.99460

349-403 CR 235 9.36×1016 73.5 230 182 0.99590
HM 250 2.09×1018 99.3 244 180 0.99435

(4) 142-399 CR 31.8 2.10×100 -244 27.3 160 0.99161
HM 41.0 3.60×101 -220 36.5 156 0.98130

599-715 CR 171 4.27×107 -108 163 264 0.98947
HM 187 2.01×108 -95.4 179 268 0.99112

aNumbers as given in Table 2 
Table 5: Thermodynamic parameters of the thermal decomposition of HLn and their Cu(II) complexes.
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The complex (3) is the highest value of Ea. This can be attributed 
to the fact that the effective charge experienced by the d-electrons 
increases due to the electron withdrawing p-substituent NO2 while it 
decreases by the electron donating character of OCH3 and CH3. This 
indicates that, the complex (3) is more thermally stable than the other 
complexes [4].

Antimicrobial activity of complexes 

The antimicrobial activity of Cu(II) complexes of HLn were 
tested against some bacteria and fungi. More than one test organism 
was tested to increase the chance of detection of their antimicrobial 
activities. The used organisms in the present investigation included two 
Gram positive bacteria (B. cereus and S. aureus) and two Gram negative 
bacteria (E. coli and K. pneumoniae) in addition to four different kinds 
of fungi (A. niger, A. alternata, P. italicum and F. oxysporium).

The results of the antibacterial activity of the Cu(II) complexes 
of HLn (1-4) were recorded in Table 6. The complexes (1-4) have no 
antibacterial activity against Klebsiella pneumoniae and Bacillus cereus 
except complex (3) has low antibacterial activity against Bacillus cereus, 
while it in all used concentration was found to have high antibacterial 
activity against Staphylococcus aureus and Escherichia coli. Complex (4) 

Complexa Concentration Gram positive bacteria Gram negative bacteria
Bacillus 
cereus 

Staphylococcus 
aureus 

Escherichia 
coli 

Klebsiella 
pneumoniae 

 (1)
50 µg/ml -ve -ve 4 -ve
100 µg/ml -ve -ve 4 -ve
150 µg/ml -ve -ve 2 -ve

(2)
50 µg/ml -ve -ve 5 -ve
100 µg/ml -ve 3 5 -ve
150 µg/ml -ve 3 4 -ve

(3)
50 µg/ml 1 8 4 -ve
100 µg/ml 1 9 4 -ve
150 µg/ml 1 10 3 -ve

(4)
50 µg/ml -ve -ve 5 -ve
100 µg/ml -ve 5 5 -ve
150 µg/ml 2 5 4 -ve

Penicillin 
50 µg/ml 1 2 1 -ve
100 µg/ml 3 2 3 -ve
150 µg/ml 3 2 3 -ve

aNumbers as given in Table 2 
Table 6: Antibacterial activity data of Cu(II) complexes. The results were recorded 
as the diameter of inhibition zone (mm).

 

8

6

4

2

0

-2
-0.4      -0.2       0.0      0.2      0.4       0.6      0.8 -0.4     -0.2     0.0     0.2    0.4     0.6     0.8     1.0

-0.4     -0.2      0.0     0.2     0.4     0.6     0.8      1.0

10

8

6

4

2

0

12

10

8

6

4

2

0
1

2

3

4

4 21

3 3

4

2

1

Hammett’s substituent coefficients (σR) Hammett’s substituent coefficients (σR)

Hammett’s substituent coefficients (σR)

In
hi

bi
tio

n 
zo

ne
 (m

m
)

In
hi

bi
tio

n 
zo

ne
 (m

m
)

In
hi

bi
tio

n 
zo

ne
 (m

m
)

(a) (b)

(c)

Figure 9: The relation between Hammett’s substituent coefficients (σR) versus inhibition zone (mm) for Cu(II) complexes (In case of 
using concentration a=50 µg/ml, b=100 µg/ml and c=150 µg/ml against S. aureus).
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Figure 10: Comparative analysis for antibacterial activity of the Cu(II) 
complexes for concentration a)=50 µg/ml, b) =100 µg/ml and c)=150 µg/ml.

Treatment Escherichia coli Staphylococcus aureus
Cell length (nm) Cell width (nm) Distance between cell wall and cell membrane (nm) Cell diameter (nm) Cell wall thickness (nm)

Control 474.7 ± 30.7 243.3 ± 5.5 17.6 ± 1.9 334.9 ± 18.7 14.6 ± 1
DMF 465.8 ± 11.4 249.3 ± 2.8 19.5 ± 0.6 274.2 ± 16* 19 ± 1.1*

Complex (3) 438.9 ± 35 252.6 ± 3.5 29.5 ± 0.6* 268.8 ± 2.4* 18.7 ± 0.4*

*Significant different at 0.05 significance level. 
Table 8: Morphometric analysis of bacterial cell treated with complex (3).

was active only at concentration=150 µg/ml. We found that the complex 
[Cu(L5)(OAc)(OH2)].2H2O (3) is more active than other complexes, 
namely [Cu(L1)(OAc)(OH2)].2H2O (1), [Cu(L3)(OAc)(OH2)].2H2O 
(2) and [Cu(L2)(OAc)(OH2)].2H2O (4) against Staphylococcus aureus, 

Escherichia coli and Bacillus cereus and this is may be related to the 
nature of the p-substituent existing in the complexes. This can be 
attributed to the fact that the effective charge experienced by the 
d-electrons increased due to the electron withdrawing character of 
complex (3) while it decreased by the electrons donating character of 
complex (1). This is in accordance with that expected from Hammett’s 
substituent coefficients (σR) as shown in Figure 9. It is clear that 
the values of inhibition zone (mm) increase with increasing σR. It 
is important to note that the existence of a methyl and/or methoxy 
group enhances the electron density on the coordination sites and 
simultaneously decreases the values of inhibition zone. Staphylococcus 
aureus was affected by the complexes (2-4) (inhibition zone of complex 
(2)=3 and 3 mm at concentrations=100 and 150 µg/ml, respectively; 
inhibition zone of complex (3)=8, 9 and 10 mm at concentrations = 50, 
100 and 150 µg/ml, respectively; inhibition zone of complex (4)=5 and 
5 mm at concentration=100 and 150 µg/ml, respectively). Addition to 
that Escherichia coli was also affected by the complexes (1-4) (inhibition 
zone of complex (1)=4, 4 and 2 mm at concentrations=50, 100 and 150 
µg/ml, respectively; inhibition zone of complex (2)=5, 5 and 4 mm at 
concentrations=50, 100 and 150 µg/ml, respectively; inhibition zone of 
complex (3)=4, 4 and 3 mm at concentrations=50, 100 and 150 µg/
ml, respectively; inhibition zone of complex (4)=5, 5 and 4 mm at 
concentrations=50, 100 and 150 µg/ml, respectively). The complex 
(3) is more active than penicillin against Staphylococcus aureus and 
Escherichia coli.

Comparative analysis for antibacterial study of complexes (1-
4) is shown in Figure 10. It is observed that the complex (3) is more 
potent antibacterial than the other complexes. This enhancement in 
antibacterial activity is rationalized on the basis of the partial sharing 
of the positive charge of metal ions with donor groups [37,38]. This 
may support the argument that some type of biomolecular binding 
to the metal ions or interchelation or electrostatic interactions causes 

Complexa Concentration 
(µg/ml)

Aspergillus 
niger

Fusarium 
oxysporum

Alternaria
alternata

Penicillium 
italicum

(1)
50 µg/ml -ve -ve -ve -ve

100 µg/ml -ve -ve -ve -ve
150 µg/ml -ve -ve -ve -ve

(2)
50 µg/ml 1 -ve 1 -ve

100 µg/ml 1 -ve 1 -ve
150 µg/ml -ve -ve -ve -ve

(3)
50 µg/ml -ve -ve 1 -ve

100 µg/ml -ve -ve 1 -ve
150 µg/ml 2 -ve 2 -ve

(4)
50 µg/ml -ve -ve -ve -ve

100 µg/ml 3 -ve 2 -ve
150 µg/ml 4 -ve 3 -ve

Miconazole
50 µg/ml 1 2 5 1

100 µg/ml 3 3 6 1
150 µg/ml 4 3 6 2

aNumbers as given in Table 2 
Table 7: Antifungal activity data of Cu(II) complexes. The results were recorded as 
the diameter of inhibition zone (mm).

http://www.google.com.eg/url?sa=t&rct=j&q=%D8%A7%D9%84%D8%A8%D9%86%D8%B3%D9%8A%D9%84%D9%8A%D9%88%D9%85+%D9%88%D9%8A%D9%83%D9%8A%D8%A8%D9%8A%D8%AF%D9%8A%D8%A7&source=web&cd=2&ved=0CDAQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPenicillium&ei=v75fT-bpBojOhAed4rDCBw&usg=AFQjCNFivhQ7fkLUuKH1RMxBAHCktUR1Iw
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the inhibition of biological synthesis. So it can be concluded that some 
complexes exhibits higher antimicrobial activity than the free ligand 
[39].

The results of the examination of antifungal activity of the 
complexes (1-4) were recorded in Table 7. The results revealed that 
the complexes (1-4) have no antifungal activity against Fusarium 
oxysporum and Penicillium italicum, while they were found to have low 
antifungal activity against Aspergillus niger and Alternaria alternate 
coli.

The results of the Transmission Electronic Micrograph (TEM) 
comparative study on the morphology and internal ultrastuctures of 
normal and complex (3) treated E. coli and S. aureus; provided strong 

evidence that complex (3) is stressful and toxic for the bacterial cells. In 
general, the cytomorphic changes; in both treated E. coli and S. aureus; 
appears mainly in the cell wall. In the case of S. aureus and complex 
(3) as well as DMF treatments resulted in significant morphometric 
changes including cell size reduction and cell wall thickening as 
presented in Table 8. These changes enabled S. aureus to keep its 
internal components in stable condition as shown in Figure 11; under 
the DMF stress; similar to normal cell (Figure 12). Although DMF 
seems to accelerate cell division, complex (3) treated bacteria showed 
normal division rate in the examined field (Figure 12). This appearance 
may be a result to high death rate after treating with complex (3).

For complex (3) could damage some sites in the thickening cell 
wall as shown in Figure 13. Moreover, complex (3) treatment led to 

 

Figure 11: TEM photograph of S. aureus treated with DMF illustrating 
decreased size of cocci cells (long black arrow), Electron-dense boundary cell 
wall increased in thickness (short black arrow), numerous ribosomes (long white 
arrow), Electron-dense granules (short white arrow) and increased number of 
cells forming division septa (arrow head). [Specimen fixed in 4F1G solution and 
double stained with uranyl acetate and lead citrate, scale bar=100 nm].

 

Figure 12: TEM photograph of normal S. aureus illustrating different size 
of cocci cells, normal thin Electron-dense cell walls (long black arrow), 
homogenous Electron-dense cytoplasm (long white arrow), normal division 
(short black arrow) and numerous ribosomes (arrow head). [Specimen fixed 
in 4F1G solution and double stained with uranyl acetate and lead citrate, scale 
bar=100 nm].

 

Figure 13: TEM photograph of S. aureus treated with complex (3) illustrating 
cocci cells, Electron-dense cell wall increased in thickness with some damaged 
sites (long black arrow), granular cell contents appear to be exuding from the 
damaged membrane (short black arrow) and some cells without boundary cell 
walls (long white arrow). [Specimen fixed in 4F1G solution and double stained 
with uranyl acetate and lead citrate, scale bar=100 nm].

 

Figure 14: TEM photograph of normal E. coli showing rod shaped cells, normal 
smooth continuous cell wall (short black arrow) and cell membrane (long black 
arrow), homogenous Electron-dense cytoplasm (short white arrow), normal 
electron-lucent region between cell wall and cell membrane (long white arrow) 
and normal cell division (arrow head). [Specimen fixed in 4F1G solution and 
double stained with uranyl acetate and lead citrate, scale bar=100 nm].
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completely lysis of some cell walls leaving the cell contents as spherical 
aggregates (Figure 13). Regarding to E. coli, DMF treatment didn’t 
result in any significant cytomorphological as shown in Figures 14 
and 15 or morphometric changes. Also, complex (3) treatment didn’t 
result in any significant morphometric changes in the cell size (Table 
8). Whereas it was found to significantly increase electron-lucent 
region between cell wall and cell membrane by more than 30% of its 
normal length (Table 8) demonstrating on detachment of the cell wall 
from the plasma membrane. This action appears to be sequenced by 
lysis of some sites in the cell wall and led to rough irregular cell wall as 
shown in Figure 16. In general, the final effect of complex (3) appears 
as granular cell contents exude from the damaged membrane (Figures 

 

Figure 15: TEM photograph of E. coli treated with DMF showing rod shaped 
cells, normal smooth continuous cell wall (short black arrow) and cell membrane 
(long black arrow), homogenous Electron-dense cytoplasm (short white arrow), 
normal electron-lucent region between cell wall and cell membrane (long 
white arrow). [Specimen fixed in 4F1G solution and double stained with uranyl 
acetate and lead citrate, scale bar=100 nm].

 

Figure 16: TEM photograph of E. coli treated with complex (3) showing rod 
cells with rough irregular cell wall (short black arrow), increased electron-lucent 
region between cell wall and cell membrane (long black arrow) and granular 
cell contents appear to be exuding from the damaged membrane (white arrow). 
[Specimen fixed in 4F1G solution and double stained with uranyl acetate and 
lead citrate, scale bar=100 nm]. 

13 and 16) which confirmed that complex (3) has bactericidal effect 
against both bacteria.

Morphological changes of organisms under stressful conditions 
are the most visible parameters of bacterial adaptation. The changes 
in morphology as an adaptive response to adverse environmental 
conditions have already been reported with several bacterial species 
[40-43].

In the present investigation, the cell morphology of complex 
(3) treated cells of studied bacteria as observed by TEM indicated 
malformed bacteria with rough and wrinkled cell surface. Furthermore, 
septal region showed slight swelling due to the formation of 
intercalating cells.

Conclusions
The results obtained can be summarized as follows:

i. The data revealed that the coordination geometry around 
Cu(II) in all complexes exhibit a trans square planar by NO.

ii. It is found that the change of substituent affects the thermal 
properties of azodye rhodanine derivatives and their Cu(II) 
complexes.

iii. The biological activity of Cu(II) complexes are tested against 
a number of Gram-positive and Gram-negative bacteria. 
The results showed that some of the complexes have a well 
considerable activity against some of the organisms.

iv. The tested complexes have good antibacterial activity 
against Staphylococcus aureus and Escherichia coli and have 
low antifungal activity against Aspergillus niger, Fusarium 
oxysporium and Alternaria alternata.

v. The complex (3) is more active than other complexes (1), (2) 
and (4) against Staphylococcus aureus and Escherichia coli.

vi. Our results of the TEM comparative study on the morphology 
and internal ultrastructures, complex (3) has bactericidal effect 
against Staphylococcus aureus and Escherichia coli.
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