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Abstract

Uric acid, a potent antioxidant for humans, birds, reptiles, and some primate species, is the end-product of purine
degradation that is formed in the xanthine/hypoxanthine reactions catalyzed by xanthine oxidase. Associated with
the evolutionary loss of urate oxidase (the enzyme that oxidizes uric acid resulting in the formation of allantoin) and
resulting increase in concentrations of uric acid is a prolonged life span. Uric acid is known to scavenge peroxynitrite
and other free radicals that can cause an imbalance of oxidants leading to oxidative stress. Uric acid also has a role
in protecting DNA from single-strand breaks caused by free radicals in the body leading to a protective effect in
neurodegenerative diseases. The brain is particularly vulnerable to oxidative stress as it is considered an ‘expensive
tissue’ with a particularly high metabolic rate and comparatively increased utilization of oxygen. Brain tissue is also
high in unsaturated lipids, which makes it more susceptible to free radical damage. Oxidative stress is thus linked to
the pathogenesis of neurodegenerative diseases and also ischemic brain injury. In this review, we summarize the
function of uric acid in alleviating oxidative damage and providing protection to neural cells during injury and
disease.

Introduction
Uric acid has been studied extensively in many physiological and

pathological systems including cancer [1] due to its role as a potent
plasma antioxidant that scavenges singlet oxygen, peroxy radicals, and
hydroxyl radicals. Free radical imbalance within a biological system
can result in oxidative damage and inflammation which can,
ultimately, increase pathogenesis of disease. The purpose of this review
is to link oxidative stress and the ameliorating effects of uric acid with
the pathogenesis of disease and present evidence toward the possibility
of implementing uric acid as a potential therapeutic agent.

Reactive oxygen species (ROS) are fundamentally free radicals
derived from molecular oxygen. Oxygen is required for the generation
of all ROS and reactive nitrogen species (RNS) as well as reactive
chlorine species [2]. Ground state oxygen, also referred to as the triplet
state, is considered to be a bi-radical, meaning that it contains two
unpaired electrons in the outer shell. The two electrons exhibit the
same spin which enables the oxygen molecule to react with one
electron at a time. In a chemical bond, oxygen is not particularly
reactive with the two electrons. However, if one of the unpaired
electrons becomes excited it can alter its spin state, which results in a
singlet oxygen species. The singlet oxygen can react with other pairs of
electrons, especially those involved in double bonds, and can become a
powerful oxidant [3].

The most commonly known ROS produced in biological systems
are the hydroxyl (·OH) radicals, the superoxide radicals (O₂¯·), nitric
oxide (NO·), peroxynitrite (ONOO¯), and hydrogen peroxide (H₂O₂).
Free radicals and other ROS are constantly formed in the body and
have been implicated in pathogenic states and oxidative stress [4]. Of
these ROS, superoxide and hydrogen peroxide radicals are of the most
importance in reduction-oxidation reactions as well as substrates in

the formation of other ROS, particularly the highly toxic hydroxyl
radical [3].

This is due to evidence that OH· attacks all proteins, DNA, PUFA in
cell membranes, and a variety of other molecules [4]. Hydroxyl
radicals can be generated by Fenton chemistry

(Fe2+ + H2O2→ Fe3+ + .OH + -OH), which are catalyzed by
transition metals. Fenton reaction generation of OH· radicals is known
to occur in submitochondrial particles under oxidative stress [5] as
well as during a number of toxicological states [6]. Exposure to
radiation can cause homolytic fission of water molecules, resulting in
the production of hydroxyl radicals as well [3].

Reduction-oxidation reactions with superoxide, hydrogen peroxide,
and hypochlorous acid also generate hydroxyl radicals in vivo [7].

Superoxide radicals are normally generated in the body via
respiratory burst during phagocytosis in immunological defense and
from the leakage of electrons from the mitochondrial electron
transport chain. Superoxide is an oxygen-centered radical and can
have selective reactivity to a variety of tissue types, proteins, DNA, etc.
[4]. In addition to superoxide radicals, hydrogen peroxide can be
produced during mitochondrial respiration and during the xanthine/
hypoxanthine reaction during purine degradation [8]. H2O2 can also
be formed when superoxide is dismutated (a reaction involving a
single substance that produces two products), by the enzyme,
superoxide dismutase. H2O2 is comparatively weakly reactive [4],
however it can be a substrate for hydroxyl radical production as well as
generation of other ROS.

The ground state of oxygen is essential to all aerobic organisms.
However, oxygen reliance can lead to toxicity and imbalance in the
body’s physiological processes. Oxidative stress is one such instance in
which this toxicity occurs. Oxidative stress can be defined as an
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imbalance between the oxidants (ROS) in the body and the
antioxidants, such that the imbalance favors the oxidants [9]. The ROS
imbalance can be caused, in general, by diminished antioxidant
concentration and by increased production of ROS [3]. This can be
caused by endogenous sources such as the leak of electrons from
mitochondria [10] and exogenous sources such as carbon monoxide
[6], radiation, and other environmental factors. Accumulated damage
by ROS then contributes to many pathogenic states as well as non-
pathogenic states due to the highly unstable nature of the ROS. Strand
breakage, base modification, and DNA-protein crosslinks can be
linked to ROS mediated damage [3].

Oxidative stress has been implied as one of the major contributing
factors to DNA damage. DNA damage and repair occur in vivo at a
continuous rate [4] with hydroxyl and superoxide radicals implicated
in the mechanism behind DNA damage. Single strand-breaks of DNA
can be inhibited by antioxidant defense systems such as uric acid [11].

Oxidative stress has also been liked with various disease states such
as ischemia and reperfusion, diabetes, and neurodegenerative disease.
Ischemia reperfusion occurs during cardiovascular events or damage
to the brain in which the tissue is deprived of oxygen [3]. Associated
with these events is an increase in ROS as well as an increase in
xanthine oxidase activity which leads to the release of superoxide
radicals from the reaction with xanthine [12]. It has also been reported
that peroxynitrite has a role in CNS inflammation [13] and in multiple
sclerosis [14].

Lastly, oxidative stress is a factor in the aging process. Over time,
oxidative damage has an effect on the glycoxidation of proteins, lipids,
and DNA. Accumulation of these glycoxidation products can impair
tissue function and impact the aging process [15]. In an attempt to
cope with oxidative stress, the organism typically up-regulates the
antioxidant defense systems.

Organisms balance their redox status by mediation of ROS
production by antioxidants. An antioxidant is, broadly, an agent that
catalytically removes free radicals and actively scavenges ROS and
reactive nitrogen species (RNS) [3]. Antioxidants tend to work at low
concentrations and are readily oxidized by ROS thereby decreasing the
ability of ROS to react with surrounding cells and tissues. It has also
been suggested that individual low molecular weight antioxidants
participate in a coordinated network with other antioxidants that
scavenge radicals [16].

Antioxidant Defense System: Selected antioxidants and uric
acid

Antioxidants and nutrition form an intimate relationship.
Exogenous sources of antioxidants are those that can be obtained from
the diet. These can include, but are not limited to, Vitamin E
(tocopherols), ascorbic acid (Vitamin C), carotenoids and flavonoids.

Vitamin E (α-tocopherol) is a potent membrane-bound, lipid
soluble antioxidant that is known to react in a direct manner with
singlet oxygen [19]. Vitamin E is also known as a scavenger of peroxyl
radicals. It is thought that α-tocopherol has the most potent
antioxidant capabilities compared to other tocopherols due to the fact
that the H+ donating ability of different tocols increases in efficiency
with greater ring methyl substitution [17]. During a deficiency state, it
has been reported that low vitamin E status resulted in the depletion of
other antioxidants such as ascorbate [18]. It was also reported that
mice with single-walled carbon nanotubes inserted in the lung showed

induced accumulation of lipid peroxidase products and a more severe
oxidative stress state due to deficiency in vitamin E [18]. Vitamin E is
decidedly an important antioxidant along with vitamin C.

Vitamin C (ascorbic acid or ascorbate) is also an exogenous
antioxidant that can be derived from the diet. Vitamin C is an
important water-soluble cytosolic antioxidant involved with radical
chain-breaking and regeneration of tocopherol from tocopheroxy
radicals [19]. With the information concerning the regeneration of
tocopherol from the tocopheroxy radical, it has been reported that
there is a synergistic relationship between vitamin C and vitamin E
[20]. Vitamin C scavenges superoxide radicals as well as other singlet
oxygen species [19]. In patients suffering an acute stroke it is often
noted that there is a reduction of vitamin E and ascorbate, which links
a decrease in antioxidant defense with a higher incidence of oxidative
damage [21].

In addition to dietary antioxidants, endogenous (genetic)
antioxidants also play a vital role in regulating ROS production and
can be either enzymatic or non-enzymatic. One of the most well-
known of these is the enzyme, superoxide dismutase (SOD). SOD is
found in the cytosol (CuZn SOD) of cells as well as in the
mitochondrial matrix (Mn-SOD) [22]. As SOD scavenges superoxide,
it limits the production of other ROS. In addition to enzymatic
endogenous antioxidants, the body also has non-enzymatic
antioxidant defense systems.

Uric acid is the end-product of purine metabolism in humans,
reptiles, new world primates, and birds. Unlike most mammals, these
species lack uricase or urate oxidase (Uox) which catalyzes the
oxidation of uric acid to allantoin. Analysis of the promoter, coding,
exonic and intronic regions of human and several primate species
determined that the hominoid lineage had eight independent nonsense
mutations that resulted in the deactivation of the Uox gene [23]. Of
the eight mutations, six are caused by a change from C to T in the
arginine codon (CGA). After examination of the prevalence of the
arginine codon in the primate species, it was suggested that the
increasing occurrence of the CGA codon is highly correlated with the
loss of urate oxidase [23]. The authors concluded that this loss was a
stepwise event and not a single step over evolutionary time [23].
Currently, the DNA database does not have a Uox sequence for birds
or reptiles and further analysis will be needed to discover the
evolutionary loss of Uox in these species. The loss of this enzyme
activity by long-lived species is linked to the antioxidant properties of
uric acid. It is also hypothesized that coevolution occurred between the
down regulation of XOR and the increase in uric acid concentrations
in species lacking urate oxidase [23]. The transcription and core
promoter activity of human XOR is repressed [24], suggesting that
there is a regulatory mechanism to prevent the overproduction of uric
acid in purine metabolism. It should be determined if such a
relationship exists in species other than humans that lack the same
Uox activity and whether this is, in fact, a coevolutionary event that
can be linked to antioxidant defense involving uric acid. An extensive
review of the loss of uricase and clinical implications in human
pathology has been published [25]

Uric acid is a potent plasma antioxidant (Figure 1) that scavenges
singlet oxygen, peroxy radicals, and hydroxyl radicals [1] and has been
studied extensively in many physiological and pathological systems
including neurodegenerative diseases. Human plasma uric acid
concentrations are typically high (≥ 2mg/dL) with a mean of 7.0mg/dL
in men and 6.0mg/dL in women [21, 26]. Uric acid can also bind with
iron ion complexes, which could signify additional antioxidant
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capabilities [27]. Studies have demonstrated the free radical
scavenging abilities of uric acid, in doses equal to and exceeding the
range found in birds, using electron spin resonance [28]. Uric acid had
a concentration-dependent effect on reducing hydroxyl and
superoxide radicals such that increasing the concentration of uric acid
increased scavenging of these radicals [28]. Further evidence from this
study showed a decrease in DNA fragmentation and lipid peroxidation
[28]. These results support the argument that uric acid acts as a
scavenger of free radicals and can be considered vital to antioxidant
defense.

Figure 1: Proposed antioxidant properties of uric acid as it pertains
to pathogenesis of some neurodegenerative diseases. Uric acid is
considered a potent antioxidant that has been demonstrated to be
neuroprotective. In the case of neurodegenerative disease
pathogenesis, studies have shown that a reduction of uric acid is
linked to an increased propensity toward disease progression. Due
to the antioxidant nature of uric acid, it can be proposed that uric
acid be considered as a therapeutic agent.

Notably, there are several comparative studies in birds that
demonstrate a direct correlation between increased uric acid
concentrations and a reduction in oxidative stress and vice versa [29,
30]. Broilers fed a high protein diet consisting of 45% casein had a
significant increase in plasma uric acid concentrations, which was
associated with a decrease in oxidative stress in the fast growing birds
suggesting that the high protein levels were not detrimental to bird
health [31]. When broilers were fed diets containing either xanthine or
hypoxanthine, plasma uric acid was markedly increased as compared
to controls, which was associated with a decrease in oxidative stress
[30]. In contrast, birds fed allopurinol (50 mg/kg body mass) showed
decreased plasma uric acid concentrations associated with a significant
increase in oxidative stress [30]. Associated with the increase in
oxidative stress was an increase in the expression of IL-1β, IFN-γ and
IL-12p35 (Settle, unpublished observations), indicative of a
proinflamatory response. A related study with inosine (0.6moles/kg
feed/day) administered to broilers treated with hemin (a prooxidant)
demonstrated that inosine elevated plasma uric acid concentrations
and reduced hemin-induced oxidative stress [32]. When a mixture of
inosine and allopurinol were fed to broilers for 3 days there was a
marked decrease in plasma uric acid as well as tissue uric acid as
compared with broilers receiving only inosine, which suggests that
tissues may be susceptible to oxidative damage even after removal of

allopurinol from the diet [33]. Conclusions from these studies support
the view that the inverse relationship between uric acid concentrations
and oxidative stress are valid and comparative across species.

Multiple Sclerosis
Uric acid also has a role in protecting DNA from single-strand

breaks caused by free radicals in the body [11] as well as a protective
role in neurodegenerative diseases. Uric acid, as a scavenger of
peroxynitrite, has been shown to exhibit protective properties in the
inhibition of CNS inflammation and the blood-CNS barrier that has
been compromised by peroxynitrite damage [13]. In addition, there
was a reduction in encephalomyelitis after treatment with uric acid in
the symptoms and increased survivability in a mouse model for
multiple sclerosis [14]. Multiple sclerosis (MS) patients are known to
have lower serum uric acid concentrations and an increase in oxidative
stress via the production of nitric oxide and the up-regulation of iNOS
whereas patients with gout have been reported not to have MS [35].
Gout and multiple sclerosis are mutually exclusive, which suggests that
reduced uric acid can be linked to a greater susceptibility to
neurodegenerative disease progression due to the lack of a potent
antioxidant defense mechanism whereas treatment with uric acid
precursors such as inosine may have therapeutic benefits. Plasma uric
acid concentrations increased from 4mg/dl to 9mg/dl in patients with
diagnosed chronic MS and administered inosine in 1-3 gm increments
twice daily, which resulted in a reduction in symptoms with no signs
of relapse over a one year period [36]. Furthermore, these patients
showed no adverse side effects to the inosine administration,
indicating that purine precursors show potential as therapeutic
treatments of MS.

Hypoxia and Ischemic Stroke
Hypoxia and ischemic stroke are both conditions during which

tissue is deprived of oxygen for a certain amount of time before
restoration. During this time, cell death and apoptosis are occurring
with free radical damage linked to many of the complications
associated with reperfusion of the tissue. The mechanisms for this
have been reviewed extensively [35] although a role of uric acid in
ischemic events is not fully understood. Studies in hippocampal cell
culture found that uric acid protects against metabolic insults and
attenuates oxidative damage [37]. It has also been reported that rats
exposed to ischemia/reperfusion during and following treatment with
uric acid have shown reduced markers of injury to the brain as well as
amelioration of behavioral and cognitive deficits often associated with
these injuries [37]. Furthermore, the combination of uric acid with a
recombinant tissue plasminogen activator (rt-PA) in ischemic stroke
patients, prevented the early fall of UA associated with a loss of neural
protection [38]. In addition to ischemic injury, there are studies
supporting the neuroprotective properties of uric acid in
neurodegenerative diseases such as Parkinson’s and Alzheimer’s.

Parkinson’s Disease
Parkinson’s Disease (PD) is a neurodegenerative disease that may in

fact be correlated with uric acid concentrations. PD is characterized by
degeneration of the pigmented dopaminergic neurons in the
substantia nigra pars of the mid brain. Patients will present with
bradykinesia, resting tremors, and cognitive impairment among other
symptoms. Although the specific underlying cause of this cell death is
not fully understood it is hypothesized that oxidative stress and
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mitochondrial dysfunction may play a role in the pathogenesis of PD
and this has been reviewed in detail [39]. The role of uric acid with the
pathogenesis of PD has not been fully elucidated, but evidence
suggests that decreased serum uric acid concentrations have been
linked with disease progression.

In a population study, 4,695 participants screened for PD and
patients with Parkinson’s or dementia markers at baseline for each
disease were excluded from the data [40]. Results from this study
showed that there was a correlation between higher serum uric acid
concentrations and a reduced incidence of PD over a course of 9.4
years [40]. Additionally, case studies similarly showed that higher
serum levels of uric acid are associated with a decrease in the
development of PD [41, 42]. Cognitive impairment is also associated
with PD. There was a correlation between cognitive ability with 40 PD
patients such that diminished cognitive exams were associated with
reduced plasma uric acid levels [43]. Based on these findings, it has
been suggested that uric acid be considered for therapeutic use in
patients with PD however, more research is needed in this area to
ascertain the dose of UA and how this will ultimately affect overall
physiological response.

Alzheimer’s Disease
Alzheimer’s disease (AD) is also characterized by a loss of cognitive

function and neuronal degeneration in patients. AD is ultimately
considered a neuropsychiatric disorder and the etiology of the disease
remains largely unknown. Oxidative stress induced damage by
enhanced lipid peroxidation in areas of the brain have been implicated
as an underlying factor in disease progression [44]. Free radical
damage may also be a factor in β-amyloid plaque formation associated
with AD [45]. There is an increase of antioxidants such as catalase and
SOD in the hippocampus and amygdala during AD [46, 47]. Similar to
PD, uric acid is decreased in patients with AD [48,49]. Research has
suggested that combining uric acid precursors such as inosine with
ascorbic acid may have therapeutic benefits for AD patients, but dose
and duration of treatment have not been determined. AD is a
progressive debilitating disease that may, in the future, also
incorporate inosine as a therapeutic agent.

Conclusions
Oxidative damage plays a role in the progression of

neurodegenerative disease states and injury to neural tissue. The brain
and central nervous system are exposed to oxidative damage generated
by free radical processes throughout life. It is hypothesized that this
constant assault by ROS on these tissues can greatly contribute to the
pathogenesis of certain disease states and exacerbate injury sites.
Understanding the antioxidant defense system is critical in finding
markers of disease as well as potential therapeutic treatments. Uric
acid is a potent endogenous antioxidant for humans, birds, and
reptiles. Comparative studies in birds demonstrate that a reduction of
uric acid leads to an increase in inflammation and oxidative stress that
can be ameliorated by administration of purine precursors. Similarly,
this treatment is also suggested for patients suffering from MS, AD,
PD, and ischemic events. Furthermore, evidence presented in the
literature demonstrates, consistently, that uric acid is lower in patients
with these neurodegenerative events (figure 1), which suggests that the
neurological system relies on uric acid to mediate free radical damage
through the scavenging of peroxynitrite. While there is a plethora of
information about uric acid, there is much to learn about its role in the

antioxidant defense system and the potential use of uric acid or its
precursors in the prevention and treatment of disease.
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