
The Role of Lipids in Inflammation: Review of the Evolving Pathogenesis of
Sickle Cell Disease
Anazoeze Jude Madu1*, Nada Abuknesha2 and Kebreab Ghebremeskel2

1Department of Haematology and Immunology, College of Medicine, University of Nigeria Enugu campus, Nigeria
2Lipidomics and Nutrition Research Center, London Metropolitan University, London, UK
*Corresponding author: Anazoeze J. Madu, Professor, Department of Haematology and Immunology, University of Nigeria Enugu Campus (UNEC), PMB 01129, Post
code 400001, Enugu, Nigeria, Tel: +2348037861784; E-mail: anazoeze.madu@unn.edu.ng

Received date: June 30, 2015, Accepted date: July 30, 2015, Published date: August 6, 2015

Copyright: ©2015 Madu AJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The pathologic features of sickle cell disease had been known in the past to be as a result of red cell abnormality
leading to vascular occlusion, haemolysis and consequent anaemia. Recent knowledge has revealed numerous
pathogenetic pathways involving leukocytes, platelets and the vascular endothelium. Complex interactions between
the inflammatory cytokines and the membrane lipids in sickle cell present several pathogenetic processes affecting
disease severity. The mechanisms of membrane fluidity, aggregation, adhesion and inflammation are strongly
associated with membrane lipid constitution. The omega -3 fatty acids via incorporation into the lipid membrane
have been found to play a central role in suppressing inflammation in several disease processes. Variations in
disease severity have been shown to correspond with levels of fatty acid desaturases involved in the synthesis of
these fatty acids. The genes coding for these substances can also be manipulated to achieve a favorable outcome
and may provide several possible therapeutic and prophylactic access points This review aims at exploring these
delicate interactions and proffering possible targets to ameliorate disease features. The information and referenced
publications quoted in this review were obtained from the PubMed Central database, using the search keywords;
inflammation, sickle cell, fatty acids and cytokines.
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Introduction
Sickle cell disease is an inherited disorder in which the mutant

globin gene produces a less efficient haemoglobin molecule, causing
depreciation in the resilience and flexibility of the red cells. Recent
advances have unearthed several other effects of this supposed mutant
globin gene. These effects are now known to include increased
expression and binding of the cellular adhesion molecules to ligands
on the vascular endothelium [1] a process similar to what is observed
during inflammation [2]. This process involves the neutrophils,
monocytes, lymphocytes and platelets as well as the reticulocytes and
red cells. The background inflammatory process tends to be
exacerbated during episodes of vaso-occlusion and has been proposed
to actually initiate them. Inflammation is regarded as the response of
living tissue to any form of assault. This response has both vascular
and cellular components, with a myriad of chemical interactions
mediating the process.

All cells are bound by a membrane considered to be the ‘barrier of
life’, as it is a structure that isolates living cells from their surroundings
[3]. One of the main components of all cellular membranes in all living
cells, are phospholipids, which make up over 40% of the cell
membrane bi-layer. This phospholipid bi-layer, with its interspersed
transmembrane proteins acts as receptors of ligands. The
asymmetrical distribution of membrane lipids in this phospholipid
layer is important in the integrity and survival of most cells. In sickle
cell anaemia, there exists an alteration in the distribution of membrane
lipids, with exposure of phosphatidyl serine (PS) in some red cells in

circulation [4]. This distorts the membrane and consequently exposes
and activates cell adhesion receptors as well as the binding sites of
certain enzymes like promthrombinase [5]. It also initiates apoptosis
of red cells and its removal by the splenic macrophages. The
concentration of the membrane lipids differs across various locations
on the membrane, with some regions showing increased concentration
of certain fatty acids. These areas are known as “rafts” or “micro-
domains”.

The Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA)
and docosapentaenoic acid (DHA), have been observed to have anti-
inflammatory effects. Dietary omega-3 fatty acids are easily
incorporated to a large extent into the cell membrane lipids and thus
influence the composition of the rafts. The mechanisms by which
these poly-unsaturated fatty acids carry out these functions are not
completely understood. However, recent studies have shown that
intake of ω-3 fatty acids decreases levels of C reactive proteins (CRP),
IL-6 and tumor necrosis factors (TNF-α) [6]. These actions are
hypothesized to be effected mainly via regulations of the transcription
factors; nuclear factor κ and peroxisome proliferator activated
receptor. Other inflammatory markers which are reduced such as;
monocytes chemo-attractant protein 1 (MCP-1), intercellular
adhesion molecule 1 (ICAM-1) and lipoprotein-associated
phospholipase A2 (LpPLA-2), also play important roles in increasing
oxidative stress [7].

The rate limiting enzymes in the production of these fatty acids are
the Δ-3 and Δ-6 fatty acid desaturases. The depreciation in activity of
these enzymes may be responsible for the depletion of the PUFAs in
sickle cell disease (SCD) patients, which occurs to a greater extent in
those with severe disease. Protein synthesis is consequent upon DNA
transcription and any mutation in genes coding for these enzymes will
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invariably affect these function. This review aims to explore the
inflammatory pathways involved in SCD as well as the impact of the
PUFAs, desaturases and their complex interactions with regards to the
myriad of phenotypic presentation observed. The review also focuses
on the background genetic variations with regards to FADs activity
that may be responsible for these observed phenotypic differences as
well as suggest possible therapeutic implications.

Inflammatory proteins and the role of membrane lipids
The red cell membrane is made of a phospholipid bi-layer and the

underlying structural protein scaffolding lattice arranged in the format
regarded as the vertical and horizontal associations. The membrane
phospholipids are made up of a polar head and a non-polar fatty acid
tail. There are proteins embedded in this bi-layer that tether them to
the underlying protein lattice. The lipids move rapidly within this bi-
layer and the areas where a high concentration of these lipids and
proteins occur are called ‘micro-domains’ or rafts. [8]. The lipid
contents of these micro-domains to some extent affect the function of
the membrane proteins/ receptors embedded in them [9,10]. These
rafts which take part in signal transduction are rich in sphingomyelin,
cholesterol and saturated glycerol phospholipids [10]. Certain dietary
lipids are easily incorporated into the membrane and reduction in
membrane cholesterol content tends to cause dissolution of these rafts
[11,12].

There also exists an active exchange of lipids between the inner and
outer leaves of the bi-layer, this is not random and is controlled by
certain proteins in the membrane. Sphingomyelin (SM) and
phosphatidyl choline (PC) – the choline containing phospholipids, are
more abundant on the outer layer, while phosphatidyl ethanolamine
(PE) and phosphatidyl serine (PS) predominate on the inner layer.
This balance is maintained by the ATP- dependent membrane
transporter called ‘flippase’, which is a Mg2+-ATPase bound to the
membrane [13]. Recently the enzyme amino-phospholipase
translocase has also been discovered to be important in the
maintenance of the lipid distribution [14]. This dynamic balance is
necessary for the optimal functioning and survival of most eukaryotic
cells.

The phospholipids in the cellular membrane contain fatty acids
(FA), and the type of diet an individual consume will directly
determine the type of FA (saturated or un-saturated) that will be
incorporated into the phospholipid bi-layer, and consequently will
define the ‘structural integrity’ and physical characteristics of the
cellular membrane [3,15, 16]. The lipid composition of the cellular
membrane will therefore, govern the effectiveness of its fluidity and
hence its membrane fluidity index (MFI) [15-17]. The PUFA’s (EPA
and DHA) have been exhibited in many studies to increase the MFI
and thus create a peculiar environment for the membrane proteins-
transporters, ion channels and receptors and by doing this influence
their activity. The physical state of the membrane needs to be
optimally balanced in terms of fluidity [16] in order for cells to carry
out their regular functions and activities maximally. In addition, ideal
MF will decrease the cells susceptibility to damage and death
significantly[3,15]. These areas of the lipid membrane bi-layer, rich in
cholesterol, sphingomyelin and saturated glycerol phospholipids are
called rafts or micro-domains. Apart from their membrane function
these rafts are also known to influence intra-cellular signaling
pathways, [8,18]thus affecting gene expression via their action on
transcription factors [19,20]. These fatty acids are known to effect
these actions by acting on transcription factors; nuclear factor κ,

binding protein for the sterol regulatory element [21] and peroxisome
proliferator activator receptor (PPAR) α and γ [22,23]. This ability has
been ascribed to DHA and EPA to varying degrees depending on the
nature of the cell. Any reduction in the incorporation of cholesterol
into the membrane is known to cause dissolution of these rafts.

Nuclear factor-κB upon activation is a potent transcription factor
for several inflammatory cytokines; cycloxygenase (COX)-2, adhesion
molecules and nitric oxide synthase. Upon activation by bacterial
endotoxins, oxidative stress, UV light or inflammatory cytokines, it
moves from the cytosol to the nucleus to enhance production of pro-
inflammatory cytokines. Several studies have shown that EPA and
DHA inhibit this inflammatory action in monocytes [24], dendritic
cells [19], macrophages [25] and endothelial cells [26]. They inhibit
monocyte NF-κB and consequently modulate transcription of TNF-α,
[22] (which plays a central role in inflammation) this influences the
other factors to indirectly control fatty and triacyl glycerol metabolism.
The PPARs are transcription factors which regulate gene expression by
binding to retinoic-X-receptors, which are bound by the ligand; 6 cis-
retinoic acid [27]. The genes coding for several enzymes involved in β-
oxidation are regulated by the PPAR-α isoform, predominantly found
in the liver. PPAR-γ is found in inflammatory cells and adipocytes and
is involved in increasing insulin sensitivity and regulating production
of inflammatory cytokines [28]. PPARs are activated by PUFAs,
especially DHA to cause decreased production of IL-6 and TNF-α as
well as effects its metabolic role on adipocytes [29]. This is proposed to
be the mechanism underlying the effect of omega-3 PUFAs in
reducing inflammation and plasma glycerol and improving insulin
sensitivity in diabetics.

Other effects of the variations in the lipid membrane are mediated
via the availability of arachidonic acid, an important substrate in the
production of very important bio-active lipid end products -
prostaglandins, thromboxanes and leukotrienes. These eicosanoids are
known mediators of inflammation causing, platelet aggregation,
smooth muscle contraction and vaso-dilatation. Intake of long chain
fatty acids (DHA and EPA) have been observed to cause decrease in
the production of these pro-inflammatory eicosanoids from
arachidonic acid as well as production of weaker or less inflammatory
analogues – prostaglandin E3 and thromboxanes A3 [30]. Recent
studies have shown that EPA and DHA are also substrates in complex
biosynthetic pathways that give rise to anti-inflammatory mediators
known as resolvins, protectins/neuroprotectins and maresins [31-33].
These mediators also take part in immuno-modulation and are
currently being hypothesized to be the major pathway through which
polyunsaturated fatty acids carry out their anti-inflammatory actions.

The omega 3 fatty acids bind to G-protein coupled receptors;
GPR40 and GPR120 are found on Adipocytes and inflammatory cells
[34]. The GPR 120 acts via its agonist, GW9508 to inhibit response of
macrophages to endotoxins [35]. This is achieved by activating the
inhibitory subunit (IκB) of NF-κB, and thereby inhibiting production
of TNF-α and IL-6. DHA and EPA are known to activate the genes for
GPR120, and their anti-inflammatory effects are to some extent
dependent on this pathway. Previous studies have shown that the anti-
inflammatory effects of DHA, was absent in GPR120 knockdown cells,
[27] further substantiating this assertion. This implies that the
inhibitory effects of DHA on NF-κB, most likely occurred via the
GPR120 pathway. However, both pathways may be involved in varying
degrees in different types of cells.
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Alteration in Membrane Lipids in Sickle Cell Disease
In mammalian cells this peculiar distribution of the membrane

lipids is of utmost importance in the maintenance of its integrity. The
red cells in their journey through areas of high oxygen tension are
particularly susceptible to the development of reactive oxygen species
[36,37]. Membrane damage due to increased oxidant stress as a result
of formation of oxygen free radicals and outstripping of the anti-
oxidant mechanisms is the main mechanisms of membrane damage in
SC. Intravascular haemolysis of sickle red cells also release haeme
protein and the enzyme arginase which mops up nitrous oxide and
arginine , respectively. This produces further oxidative stress, resulting
in production of more oxygen free radicals. These reactive oxygen
species disrupt the apolar acyl chains of the membrane phospholipids
and thereby making close-packing of the lipids impossible [29]. These
oxidized portions are usually removed by the phospholipases via a de-
acylation process and replaced by selective uptake from plasma lipids
in an ATP-dependent process called re-acylation. Inability to initiate
this repair process leads to excessive exposure of PS on the outer leaf of
the membrane. This exposure in platelets has been noted to be the
initial step in activation of the coagulation cascade [38] and its
occurrence in red cells lead to removal by macrophages as well as
interactions with other cells and vascular endothelium [5]. In
haemoglobinopathies the altered haemoglobin produces added
oxidant stress on the anti-oxidant system, as well as the repair process
of the membrane phospholipid layer[39,40].

Homozygous S individuals have been shown to have a reduced
capacity to handle oxidative stress. This is coupled with their enhanced
propensity of the red cell environment to generate oxygen free radical
due to its iron content and passage through regions of high oxygen
tension, as it traverses the vasculature. There is also an observed
reduction in the activity of plasma as well as membrane bound anti-
oxidants notably, plasma retinol, α-tocopherol and β-carotene and the
red cell Cu/Zn-superoxide dismutase and Se-glutathione peroxidase
[41]. The changes in these anti-oxidants have also been observed to
correlate with the concentration of the fatty acids DHA and EPA [36],
it has not yet become clear which is the cause or effect of the other.
However, it has been proposed that the increased generation of oxygen
free radicals leads to peroxidation of the more susceptible lipids- n-5
and n-6 fatty acids, and their subsequent depletion. It will however
need to be demonstrated that an increase in the antioxidant levels will
lead to a subsequent increase in omega 3 fatty acid levels.

Background Inflammation in Sickle Cell
Sickle cell patients with a high leukocyte counts have higher

predisposition to develop vaso-occlusive crises as well as several other
chronic complications of sickle cell disease. High levels of pro-
inflammatory cytokines have been observed in these patients even
while in steady state [42-44]. There’s increasing evidence of the over-
expression of the platelet selectin and its ligand (PSGL-1 or CD162),
leukocyte selectin (CD62), β2 integrin and platelet endothelial cell
adhesion molecule-1[6]. The vascular endothelium is also activated
with increased expression of inter-cellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This
background state of smoldering inflammation persists, though on a
lower scale in sickle cell patients in steady state. The initial contact and
rolling of the leukocytes on the endothelium is mediated via CD62L,
while the firmer attachment and diapedesis are mediated by β
integrins and CD31 (PECAM-1 platelet endothelial cell adhesion
molecule). These leukocytes then bind to each other and to the

platelets, red cells and reticulocytes to form larger aggregates, capable
of occluding vascular lumen. This is similar to the initial steps
observed in acute inflammatory processes and also involves
endothelial activation via TNF-α and interleukin-1β, released by
monocytes. Periodic exacerbation of these events occur as vaso-
occlusive crisis when external stimuli, like infections or physiologic
stress, cause greater amounts inflammatory cytokines to be released by
activated leukocytes.

These cellular adhesion molecules and their ligands occur as trans-
membrane proteins and receptors, and their concentrations as well as
activity are most likely affected by the lipid composition of the
membrane. A large community-based study has shown an inverse
relationship between the level of inflammatory biomarkers (notably
IL-6, TNF receptor, ICAM-1 and P-selectin) and the blood EPA and
DHA levels [45,46]. Drugs like hydroxyurea (HU) have been found to
cause improvement even in patients in whom there was no significant
change in their haemoglobin F levels. Apart from reducing the
neutrophil count (and thereby depleting the overall number of
inflammatory cells and ligands available), it has been found to also
reduce expression of adhesion molecules by reticulocytes [47] and
inhibit the translocation of PS to the outer membrane leaf of the red
cell [48].

Possible genetic variations underlying observed changes in lipid
metabolism and their possible influence on disease phenotype.

There are peculiar differences which exist in the genome of
minority of individuals; these variations may lead to alterations in
quantity or activity of certain enzymes. These small scale genetic
variations include; single, double or multi-nucleotide polymorphisms
(SNP), as well as microindels. Microindels are additions or deletions of
extra nucleotides as well as occurrence of repetitions of 1 to 50
nucleotides, or combinations of both within the sequence. SNPs are
single base changes in the DNA sequence, seen in less than 1% of
individuals, which occur at an approximate frequency of 1 in 1000kb
[49] and may or may not be of clinical significance. These mutations
may occur in the coding region of genes encoding the fatty acid
desaturases or inflammatory cytokines and thereby confer some
phenotypic differences in terms of disease severity. Previous studies
have observed that SNPs and microindels have been implicated in
drug metabolism via their encoding gene- CYP2D6 with loss of
enzyme activity and slow metabolism [50,51]. Alterations in the FADS
enzyme genes are associated with the variations in the activity of these
enzymes [52,53] as well as the K-ras gene in some other patient
groups. Polymorphism in the genes coding for the FADS enzymes
have been discovered in genome wide association studies by Guan et
al. [54].

The FADs enzymes as well as phospholipase-A 2, play a pivotal role
in the production of the anti-inflammatory omega-3 fatty acids and
pro-inflammatory omega-6 fatty acids. Previous studies have shown
low activity of the FADS enzymes as well as omega-3 fatty acids in
sickle cell patients with severe disease. Meta-analysis of genes coding
for the Omega-6 fatty acids have also revealed that gene loci in other
chromosomes as well as distant SNPs may also affect the level and
activity of this enzyme [54]. Modifications and changes in the genes
coding for these enzymes will lead to loss of FADS enzyme activity or
quantity and invariably lead to increased production of IL-6 and TNF-
α, with subsequent worsening of the clinical features of the disease. We
hypothesize this as a possible explanation for the variations in the
phenotypic manifestations observed in sickle cell disease.
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Future Therapeutic Implications
Therapeutic targets have so far concentrated on the red cell-induced

vaso-occlusion and the haemolysis associated with the disease. This
has included attempts at improving hydration, ameliorating anti-
oxidant effects, increasing synthesis of HbF, replenishing plasma
arginine and improving red cell rheology. This section will however
focus on the possible prospective anti-inflammatory and fatty acid
metabolic options.

Omega-3 fatty acids
The omega-3 fatty acids play a pivotal role in the synthesis of less

inflammatory end products of the cycloxygenase pathway, but more
importantly suppress transcriptions of the genes of potent cytokines,
which mediate inflammation. This has been shown by several studies
in past in different patient groups, including SC [6] and diabetes, [55]
where they have been noted to induce amelioration of the symptoms
and improve well-being [56]. Dietary DHA and EPA, after
incorporation into the cell membrane, have also been shown in
previous studies to increase membrane fluidity and thus affect the
activity of the transmembrane proteins [12]. These are natural
products with little or no side effects, which given at certain doses,
positively influence metabolic pathways to favor reduced
inflammation, and consequently reduce disease severity. It must
always be remembered that inflammation is an innate defensive
mechanism and that it’s prolonged and sustained suppression, may
likely lead to some untoward effects. However the PUFAs as opposed
to the saturated FAs competitively bind to the Toll-like receptor 4,
through which it influences the transcription of NF-κ, and
consequently the COX-2 pathway, while the COX-1 pathway remains
relatively untouched [25]. In this way the most beneficial
inflammatory proteins and cytokines are to a large extent preserved.
The therapeutic threshold for each disease entity, as well as the ‘ceiling
dose’, beyond which severe adverse effects occur, has not yet been
adequately established. The ratio of omega-3 to omega-6 fatty acids
has also been observed to be of importance, since the excess of
omega-6 FAs favors the increased inflammation, insulin resistance and
macrophage infiltration[57]. Future research will most likely focus on
the synthesizing omega-3 fatty acid analogues and mixtures of various
PUFAs in order to achieve an effective dosing and metabolic
equilibrium.

Fatty Acid Desaturases and their encoding genes
These enzymes occur as the rate-limiting enzymes in the

production of the omega-3 fatty acids [58]. Increase in the production
of these fatty acids can also be achieved by increasing the FADS
enzyme activity or alternatively targeting their coding genes or
transcription factors [59]. The FADS1 and 2 enzymes are encoded by
exon 13 on chromosome 11q12.2-13.1for FADS1 and exon 14 on
chromosome 11q12.2, for FADS 2. Alterations in the form of
polymorphisms affecting these genes will affect their transcription
[52,53] and may be utilized to obtain an increase in production of
PUFAs. Also these areas may be targeted by plasmids containing
specific desired sequences which are capable of converting severe to
mild disease phenotypes.

Hydroxyurea and its analogues
Majority of the effects of HU on sickle cell disease is carried out via

its ability to reduce neutrophil count, increase HbF levels [60] and

reduce expression of cellular adhesion molecules[48,61].
Hydroxycarbamide also reduces the exposure of phosphatidyl serine
on the surface of platelets and red cells [48]. It has been observed that
HU does not cause an increase in HbF in all SCA patients, [62]and
does not completely protect against end organ damage [63]. Previous
research has also shown that HU mobilizes arachidonic acid from the
inner leaflet of the red cell membrane via its action on COX-2 and
cytoplasmic PLA-2 [64]. The eicosanoids DHA which is generated as a
result of this process is thought to play a part in the therapeutic
improvement seen in patients on HU. However the observation of a
reduction in fertility and alterations in sex hormones after 6 months of
therapy raises some concerns [65]. There arises the need to increase
efforts to produce a safer analogue of this very important molecule,
which may also be used in combination with drugs acting via other
pathways at less toxic doses.

Inhibition of adhesion molecules
Several adhesion molecules are being targeted in on-going trials.

The selectin inhibitors, Rivipansel and low molecular weight heparin
both act by inhibiting platelet, leukocyte and endothelial adhesion[46].
HU to a large extent also diminishes the cellular and endothelial
adhesion molecules by reducing the total number of white cells
available for adhesion [66]. Omega 3 fatty acids on the other hand
suppress the expression of the adhesion molecules β2- integrin
(CD-11b) and L-selectin (CD62L) in monocytes and granulocytes [6].
Intravenous gamma globulins as well as β3-integrin inhibitors are also
being tested [63]. These molecules are quite appropriate for both
prevention and treatment of end organ damage, in some cases.
However the search for a treatment of the most prevalent form of
crisis- the acute vaso-occlusive (bone pain) still remains elusive.
Emergency therapeutic drugs are still required which should be
capable of adequately aborting acute vaso-occlusion.

Resolvins/Protectins pathway activators
The resolvins, protectins and maresins are end product of the

metabolism of DHA and to a lesser extent EPA, via complex
biosynthetic pathways. They seem to play an important role in
suppressing inflammation and have been hypothesized to be the major
pathway through which n-3 fatty acids achieve these ends [67]. They
also play a role in modulating immune functions via their direct effect
on gene expression, targeting genes coding for cytokines, cyclo-
oxygenase, nitric oxide synthetase and metalloproteinases [20,68].
Therefore these mediators or their analogues can be given directly, as a
form of more specific therapeutic targeting, to achieve these desirable
ends.

Targeting genes for transcription factors in the
inflammatory pathway

Down-regulation of the transcription factor NF-κB has been noted
repeatedly to be responsible for majority of the actions of most
important prospective molecules in trial. Synthetic products targeting
this transcription factor can be developed and tried in the clinical
setting. Gene therapy has been on the lime-light for some years now,
but newer target genes should be explored. Ex-vivo manipulation of
autologous haemopoietic stem cells have also been tried, especially for
patients who do not have a matched donor [69]. Newer and safer viral
vectors have also been developed to overcome the occurrence of
genotoxicity. The beta globin gene chain in erythropoietic stem cells
had been used in the past, but current and future researches are
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focusing on the pluripotent stem cells [70]. It may also be helpful
target the inflammatory genes if these makes transfection and uptake
more tolerable, as this may serve to ameliorate disease severity.

Declaration of Interests
The authors report no declaration of interests.

References:
1. Okpala I (2006) Leukocyte adhesion and the pathophysiology of sickle

cell disease. Curr Opin Hematol 13: 40-44.
2. Niu X, Nouraie M, Campbell A, Rana S, Minniti CP, et al. (2009)

Angiogenic and inflammatory markers of cardiopulmonary changes in
children and adolescents with sickle cell disease. PLoS One 4: e7956.

3. Ibarguren M, López DJ, Escribá PV (2014) The effect of natural and
synthetic fatty acids on membrane structure, microdomain organization,
cellular functions and human health. Biochim Biophys Acta 1838:
1518-1528.

4. Kuypers FA (2007) Membrane lipid alterations in hemoglobinopathies.
Hematology Am Soc Hematol Educ Program .

5. Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane
phospholipid asymmetry in blood cells. Blood 89: 1121-1132.

6. Daak AA, Elderdery AY, Elbashir LM, Mariniello K, Mills J, et al. (2015)
Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-ÎºB)
gene and blood cell adhesion molecule expression in patients with
homozygous sickle cell disease. Blood Cells Mol Dis 55: 48-55.

7. Calder PC (2015) Marine omega-3 fatty acids and inflammatory
processes: Effects, mechanisms and clinical relevance. Biochim Biophys
Acta 1851: 469-484.

8. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and
insights. Nat Rev Mol Cell Biol 11: 688-699.

9. Ventimiglia LN, Alonso MA (2013) The role of membrane rafts in Lck
transport, regulation and signalling in T-cells. Biochem J 454: 169-179.

10. Simmons C, Ingham V, Williams A, Bate C (2014) Platelet-activating
factor antagonists enhance intracellular degradation of amyloid-beta42 in
neurons via regulation of cholesterol ester hydrolases. Alzheimers Res
Ther 6:15.

11. Torres M, Price SL, Fiol-Deroque MA, Marcilla-Etxenike A, Ahyayauch
H, et al. (2014) Membrane lipid modifications and therapeutic effects
mediated by hydroxydocosahexaenoic acid on Alzheimer's disease.
Biochim Biophys Acta 1838: 1680-1692.

12. Calder PC, Yaqoob P, Harvey DJ, Watts A, Newsholme EA (1994)
Incorporation of fatty acids by concanavalin A-stimulated lymphocytes
and the effect on fatty acid composition and membrane fluidity. Biochem
J 300 : 509-518.

13. Soupene E, Kuypers FA (2006) Identification of an erythroid ATP-
dependent aminophospholipid transporter. Br J Haematol 133: 436-438.

14. Sarkar A, Sengupta D, Mandal S, Sen G, Dutta Chowdhury K, et al.
(2015) Treatment with garlic restores membrane thiol content and
ameliorates lead induced early death of erythrocytes in mice. Environ
Toxicol 30: 396-410.

15. Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI (2002) The role of
polyunsaturated fatty acids in restoring the aging neuronal membrane.
Neurobiol Aging 23: 843-853.

16. Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are
mediators of brain biochemistry and cognitive functions. J Neurosci Res
56: 565-570.

17. Dyall SC, Michael-Titus AT (2008) Neurological benefits of omega-3
fatty acids. Neuromolecular Med 10: 219-235.

18. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:
655-667.

19. Draper E, Reynolds CM, Canavan M, Mills KH, Loscher CE, et al. (2011)
Omega-3 fatty acids attenuate dendritic cell function via NF-B
independent of PPARγ. J Nutr Biochem 22: 784-790.

20. Calder PC (2013) Long chain fatty acids and gene expression in
inflammation and immunity. Curr Opin Clin Nutr Metab Care 16:
425-433.

21. Jump DB (2008) N-3 polyunsaturated fatty acid regulation of hepatic
gene transcription. Curr Opin Lipidol 19: 242-247.

22. Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ (2003) NF-kappa
B inhibition by omega -3 fatty acids modulates LPS-stimulated
macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol
Physiol 284: L84-89.

23. Göttlicher M, Widmark E, Li Q, Gustafsson JA (1992) Fatty acids activate
a chimera of the clofibric acid-activated receptor and the glucocorticoid
receptor. Proc Natl Acad Sci U S A 89: 4653-4657.

24. Lo CJ, Chiu KC, Fu M, Lo R, Helton S (1999) Fish oil decreases
macrophage tumor necrosis factor gene transcription by altering the NF
kappa B activity. J Surg Res 82: 216-221.

25. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but
not unsaturated fatty acids, induce the expression of cyclooxygenase-2
mediated through Toll-like receptor 4. J Biol Chem 276: 16683-16689.

26. Khalfoun B, Thibault F, Watier H, Bardos P, Lebranchu Y (1997)
Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human
endothelial cell production of interleukin-6. Adv Exp Med Biol 400B:
589-597.

27. Hasan AU, Ohmori K, Konishi K, Igarashi J, Hashimoto T, et al. (2015)
Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and
PPARγ mediated pathways in 3T3-L1 adipocytes. Mol Cell Endocrinol
406: 10-18.

28. Szanto A, Nagy L (2008) The many faces of PPARgamma: anti-
inflammatory by any means? Immunobiology 213: 789-803.

29. Kong W, Yen JH, Vassiliou E, Adhikary S, Toscano MG, et al. (2010)
Docosahexaenoic acid prevents dendritic cell maturation and in vitro and
in vivo expression of the IL-12 cytokine family. Lipids Health Dis 9: 12.

30. Moncada S, Vane JR (1979) The role of prostacyclin in vascular tissue.
Fed Proc 38: 66-71.

31. Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid
mediators in the inflammatory response: An update. Biochim Biophys
Acta 1801: 1260-1273.

32. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation:
dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev
Immunol 8: 349-361.

33. Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and
proresolving lipid mediators. Annu Rev Pathol 3: 279-312.

34. Liu Y, Chen LY, Sokolowska M, Eberlein M, Alsaaty S, et al. (2014) The
fish oil ingredient, docosahexaenoic acid, activates cytosolic
phospholipase A2‚ via GPR120 receptor to produce prostaglandin E2‚ and
plays an anti-inflammatory role in macrophages. Immunology 143:
81-95.

35. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, et al. (2010)
GPR120 is an omega-3 fatty acid receptor mediating potent anti-
inflammatory and insulin-sensitizing effects. Cell 142: 687-698.

36. Ren H, Ghebremeskel K, Okpala I, Lee A, Ibegbulam O, et al. (2008)
Patients with sickle cell disease have reduced blood antioxidant
protection. International journal for vitamin and nutrition research
Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung
Journal international de vitaminologie et de nutrition. 78:139-147.

37. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity.
Toxicology 149: 43-50.

38. Nur E, Brandjes DP, Teerlink T, Otten HM, Oude Elferink RP, et al.
(2012) N-acetylcysteine reduces oxidative stress in sickle cell patients.
Ann Hematol 91: 1097-1105.

39. Hebbel RP (1984) Erythrocyte autoxidation and the membrane
abnormalities of sickle red cells. Prog Clin Biol Res 159: 219-225.

40. Schrier SL, Centis F, Verneris M, Ma L, Angelucci E (2003) The role of
oxidant injury in the pathophysiology of human thalassemias. Redox Rep
8: 241-245.

Citation: Madu AJ, Abuknesha N, Ghebremeskel K (2015) The Role of Lipids in Inflammation: Review of the Evolving Pathogenesis of Sickle
Cell Disease. Biol Med (Aligarh) 7: 244. doi:10.4172/0974-8369.1000244

Page 5 of 6

Biol Med (Aligarh)
ISSN:0974-8369 BLM (Aligarh), Open Access Journal

Volume 7 • Issue 4 • 1000244

http://www.ncbi.nlm.nih.gov/pubmed/16319686
http://www.ncbi.nlm.nih.gov/pubmed/16319686
http://www.ncbi.nlm.nih.gov/pubmed/19956689
http://www.ncbi.nlm.nih.gov/pubmed/19956689
http://www.ncbi.nlm.nih.gov/pubmed/19956689
http://www.ncbi.nlm.nih.gov/pubmed/24388951
http://www.ncbi.nlm.nih.gov/pubmed/24388951
http://www.ncbi.nlm.nih.gov/pubmed/24388951
http://www.ncbi.nlm.nih.gov/pubmed/24388951
http://www.ncbi.nlm.nih.gov/pubmed/18024611
http://www.ncbi.nlm.nih.gov/pubmed/18024611
http://www.ncbi.nlm.nih.gov/pubmed/9028933
http://www.ncbi.nlm.nih.gov/pubmed/9028933
http://www.ncbi.nlm.nih.gov/pubmed/25976467
http://www.ncbi.nlm.nih.gov/pubmed/25976467
http://www.ncbi.nlm.nih.gov/pubmed/25976467
http://www.ncbi.nlm.nih.gov/pubmed/25976467
http://www.ncbi.nlm.nih.gov/pubmed/25149823
http://www.ncbi.nlm.nih.gov/pubmed/25149823
http://www.ncbi.nlm.nih.gov/pubmed/25149823
http://www.ncbi.nlm.nih.gov/pubmed/20861879
http://www.ncbi.nlm.nih.gov/pubmed/20861879
http://www.ncbi.nlm.nih.gov/pubmed/23931554
http://www.ncbi.nlm.nih.gov/pubmed/23931554
http://www.ncbi.nlm.nih.gov/pubmed/24625058
http://www.ncbi.nlm.nih.gov/pubmed/24625058
http://www.ncbi.nlm.nih.gov/pubmed/24625058
http://www.ncbi.nlm.nih.gov/pubmed/24625058
http://www.ncbi.nlm.nih.gov/pubmed/24374316
http://www.ncbi.nlm.nih.gov/pubmed/24374316
http://www.ncbi.nlm.nih.gov/pubmed/24374316
http://www.ncbi.nlm.nih.gov/pubmed/24374316
http://www.ncbi.nlm.nih.gov/pubmed/8002957
http://www.ncbi.nlm.nih.gov/pubmed/8002957
http://www.ncbi.nlm.nih.gov/pubmed/8002957
http://www.ncbi.nlm.nih.gov/pubmed/8002957
http://www.ncbi.nlm.nih.gov/pubmed/16643453
http://www.ncbi.nlm.nih.gov/pubmed/16643453
http://www.ncbi.nlm.nih.gov/pubmed/23997012
http://www.ncbi.nlm.nih.gov/pubmed/23997012
http://www.ncbi.nlm.nih.gov/pubmed/23997012
http://www.ncbi.nlm.nih.gov/pubmed/23997012
http://www.ncbi.nlm.nih.gov/pubmed/12392789
http://www.ncbi.nlm.nih.gov/pubmed/12392789
http://www.ncbi.nlm.nih.gov/pubmed/12392789
http://www.ncbi.nlm.nih.gov/pubmed/10374811
http://www.ncbi.nlm.nih.gov/pubmed/10374811
http://www.ncbi.nlm.nih.gov/pubmed/10374811
http://www.ncbi.nlm.nih.gov/pubmed/18543124
http://www.ncbi.nlm.nih.gov/pubmed/18543124
http://www.ncbi.nlm.nih.gov/pubmed/12562849
http://www.ncbi.nlm.nih.gov/pubmed/12562849
http://www.ncbi.nlm.nih.gov/pubmed/21111596
http://www.ncbi.nlm.nih.gov/pubmed/21111596
http://www.ncbi.nlm.nih.gov/pubmed/21111596
http://www.ncbi.nlm.nih.gov/pubmed/23657154
http://www.ncbi.nlm.nih.gov/pubmed/23657154
http://www.ncbi.nlm.nih.gov/pubmed/23657154
http://www.ncbi.nlm.nih.gov/pubmed/18460914
http://www.ncbi.nlm.nih.gov/pubmed/18460914
http://www.ncbi.nlm.nih.gov/pubmed/12388359
http://www.ncbi.nlm.nih.gov/pubmed/12388359
http://www.ncbi.nlm.nih.gov/pubmed/12388359
http://www.ncbi.nlm.nih.gov/pubmed/12388359
http://www.ncbi.nlm.nih.gov/pubmed/1316614
http://www.ncbi.nlm.nih.gov/pubmed/1316614
http://www.ncbi.nlm.nih.gov/pubmed/1316614
http://www.ncbi.nlm.nih.gov/pubmed/10090832
http://www.ncbi.nlm.nih.gov/pubmed/10090832
http://www.ncbi.nlm.nih.gov/pubmed/10090832
http://www.ncbi.nlm.nih.gov/pubmed/11278967
http://www.ncbi.nlm.nih.gov/pubmed/11278967
http://www.ncbi.nlm.nih.gov/pubmed/11278967
http://www.ncbi.nlm.nih.gov/pubmed/9547608
http://www.ncbi.nlm.nih.gov/pubmed/9547608
http://www.ncbi.nlm.nih.gov/pubmed/9547608
http://www.ncbi.nlm.nih.gov/pubmed/9547608
http://www.ncbi.nlm.nih.gov/pubmed/25697344
http://www.ncbi.nlm.nih.gov/pubmed/25697344
http://www.ncbi.nlm.nih.gov/pubmed/25697344
http://www.ncbi.nlm.nih.gov/pubmed/25697344
http://www.ncbi.nlm.nih.gov/pubmed/18926294
http://www.ncbi.nlm.nih.gov/pubmed/18926294
http://www.ncbi.nlm.nih.gov/pubmed/20122166
http://www.ncbi.nlm.nih.gov/pubmed/20122166
http://www.ncbi.nlm.nih.gov/pubmed/20122166
http://www.ncbi.nlm.nih.gov/pubmed/215463
http://www.ncbi.nlm.nih.gov/pubmed/215463
http://www.ncbi.nlm.nih.gov/pubmed/20708099
http://www.ncbi.nlm.nih.gov/pubmed/20708099
http://www.ncbi.nlm.nih.gov/pubmed/20708099
http://www.ncbi.nlm.nih.gov/pubmed/18437155
http://www.ncbi.nlm.nih.gov/pubmed/18437155
http://www.ncbi.nlm.nih.gov/pubmed/18437155
http://www.ncbi.nlm.nih.gov/pubmed/18233953
http://www.ncbi.nlm.nih.gov/pubmed/18233953
http://www.ncbi.nlm.nih.gov/pubmed/24673159
http://www.ncbi.nlm.nih.gov/pubmed/24673159
http://www.ncbi.nlm.nih.gov/pubmed/24673159
http://www.ncbi.nlm.nih.gov/pubmed/24673159
http://www.ncbi.nlm.nih.gov/pubmed/24673159
http://www.ncbi.nlm.nih.gov/pubmed/20813258
http://www.ncbi.nlm.nih.gov/pubmed/20813258
http://www.ncbi.nlm.nih.gov/pubmed/20813258
http://europepmc.org/abstract/MED/19003736
http://europepmc.org/abstract/MED/19003736
http://europepmc.org/abstract/MED/19003736
http://europepmc.org/abstract/MED/19003736
http://europepmc.org/abstract/MED/19003736
http://www.ncbi.nlm.nih.gov/pubmed/10963860
http://www.ncbi.nlm.nih.gov/pubmed/10963860
http://www.ncbi.nlm.nih.gov/pubmed/22318468
http://www.ncbi.nlm.nih.gov/pubmed/22318468
http://www.ncbi.nlm.nih.gov/pubmed/22318468
http://www.ncbi.nlm.nih.gov/pubmed/6473462
http://www.ncbi.nlm.nih.gov/pubmed/6473462
http://www.ncbi.nlm.nih.gov/pubmed/14962357
http://www.ncbi.nlm.nih.gov/pubmed/14962357
http://www.ncbi.nlm.nih.gov/pubmed/14962357


41. Schacter LP, DelVillano BC, Gordon EM, Klein BL (1985) Red cell
superoxide dismutase and sickle cell anemia symptom severity. Am J
Hematol 19: 137-144.

42. Pathare A, Al Kindi S, Alnaqdy AA, Daar S, Knox-Macaulay H, et al.
(2004) Cytokine profile of sickle cell disease in Oman. Am J Hematol 77:
323-328.

43. Croizat H (1994) Circulating cytokines in sickle cell patients during
steady state. Br J Haematol 87: 592-597.

44. Bourantas KL, Dalekos GN, Makis A, Chaidos A, Tsiara S, et al. (1998)
Acute phase proteins and interleukins in steady state sickle cell disease.
Eur J Haematol 61: 49-54.

45. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, et al. (2015) Red
blood cell fatty acids and biomarkers of inflammation: a cross-sectional
study in a community-based cohort. Atherosclerosis 240: 431-436.

46. Okpala I (2015) Investigational selectin-targeted therapy of sickle cell
disease. Expert Opin Investig Drugs 24: 229-238.

47. Styles LA, Lubin B, Vichinsky E, Lawrence S, Hua M, et al. (1997)
Decrease of very late activation antigen-4 and CD36 on reticulocytes in
sickle cell patients treated with hydroxyurea. Blood 89: 2554-2559.

48. Covas DT, de Lucena Angulo I, Vianna Bonini Palma P, Zago MA (2004)
Effects of hydroxyurea on the membrane of erythrocytes and platelets in
sickle cell anemia. Haematologica 89: 273-280.

49. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid
genome sequence of an individual human. PLoS Biol 5: e254.

50. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006)
Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:
119-137.

51. Ingelman-Sundberg M, Sim SC (2010) Pharmacogenetic biomarkers as
tools for improved drug therapy; emphasis on the cytochrome P450
system. Biochem Biophys Res Commun 396: 90-94.

52. Nwankwo JO, Spector AA, Domann FE (2003) A nucleotide insertion in
the transcriptional regulatory region of FADS2 gives rise to human fatty
acid delta-6-desaturase deficiency. J Lipid Res 44: 2311-2319.

53. Merino DM, Ma DW, Mutch DM (2010) Genetic variation in lipid
desaturases and its impact on the development of human disease. Lipids
Health Dis 9: 63.

54. Guan W, Steffen BT, Lemaitre RN, Wu JH, Tanaka T, et al. (2014)
Genome-wide association study of plasma N6 polyunsaturated fatty acids
within the cohorts for heart and aging research in genomic epidemiology
consortium. Circ Cardiovasc Genet 7: 321-331.

55. Elwakeel NM, Hazaa HH (2015) Effect of omega 3 fatty acids plus low-
dose aspirin on both clinical and biochemical profiles of patients with
chronic periodontitis and type 2 diabetes: a randomized double blind
placebo-controlled study. J Periodontal Res [Epub ahead of print].

56. Yessoufou A, Nekoua MP, Gbankoto A, Mashalla Y, Moutairou K (2015)
Beneficial effects of omega-3 polyunsaturated Fatty acids in gestational

diabetes: consequences in macrosomia and adulthood obesity. J Diabetes
Res 731434.

57. Lopez-Vicario C, Gonzalez-Periz A, Rius B, Moran-Salvador E, Garcia-
Alonso V, et al. (2014) Molecular interplay between Delta5/Delta6
desaturases and long-chain fatty acids in the pathogenesis of non-
alcoholic steatohepatitis. Gut 63:344-355.

58. Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N (2014) Delta-5 and
delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related
pathways with pleiotropic influences in health and disease. Adv Exp Med
Biol 824: 61-81.

59. Roke K, Ralston JC, Abdelmagid S, Nielsen DE, Badawi A, et al.(2013)
Variation in the FADS1/2 gene cluster alters plasma n-6 PUFA and is
weakly associated with hsCRP levels in healthy young adults. PLEFA 89:
257-263.

60. Calzolari R, Pecoraro A, Borruso V, Troia A, Acuto S, et al. (2008)
Induction of gamma-globin gene transcription by hydroxycarbamide in
primary erythroid cell cultures from Lepore patients. Br J Haematol 141:
720-727.

61. Odièvre MH, Bony V, Benkerrou M, Lapouméroulie C, Alberti C, et al.
(2008) Modulation of erythroid adhesion receptor expression by
hydroxyurea in children with sickle cell disease. Haematologica 93:
502-510.

62. McGann PT, Ware RE (2011) Hydroxyurea for sickle cell anemia: what
have we learned and what questions still remain? Curr Opin Hematol 18:
158-165.

63. Conran N (2015) Prospects for early investigational therapies for sickle
cell disease. Expert Opin Investig Drugs 24: 595-602.

64. Daak AA, Ghebremeskel K, Elbashir MI, Bakhita A, Hassan Z, et al.
(2011) Hydroxyurea therapy mobilises arachidonic Acid from inner cell
membrane aminophospholipids in patients with homozygous sickle cell
disease. J Lipids 2011: 718014.

65. Berthaut I, Guignedoux G, Kirsch-Noir F, de Larouziere V, Ravel C, et al.
(2008) Influence of sickle cell disease and treatment with hydroxyurea on
sperm parameters and fertility of human males. Haematologica 93:
988-993.

66. Okpala I (2004) The intriguing contribution of white blood cells to sickle
cell disease - a red cell disorder. Blood Rev 18: 65-73.

67. Calder PC (2013) n-3 fatty acids, inflammation and immunity: new
mechanisms to explain old actions. Proc Nutr Soc 72: 326-336.

68. Dhingra AK, Chopra B, Dass R, Mittal SK (2015) An update on Anti-
inflammatory Compounds: A Review. Antiinflamm Antiallergy Agents
Med Chem .

69. Ghosh S Thrasher AJ, Gaspar HB (2015) Gene therapy for monogenic
disorders of the bone marrow. Br J Haematol .

70. Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, et al. (2015)
Recent trends in the gene therapy of β-thalassemia. J Blood Med 6: 69-85.

Citation: Madu AJ, Abuknesha N, Ghebremeskel K (2015) The Role of Lipids in Inflammation: Review of the Evolving Pathogenesis of Sickle
Cell Disease. Biol Med (Aligarh) 7: 244. doi:10.4172/0974-8369.1000244

Page 6 of 6

Biol Med (Aligarh)
ISSN:0974-8369 BLM (Aligarh), Open Access Journal

Volume 7 • Issue 4 • 1000244

http://www.ncbi.nlm.nih.gov/pubmed/4003385
http://www.ncbi.nlm.nih.gov/pubmed/4003385
http://www.ncbi.nlm.nih.gov/pubmed/4003385
http://www.ncbi.nlm.nih.gov/pubmed/15551290
http://www.ncbi.nlm.nih.gov/pubmed/15551290
http://www.ncbi.nlm.nih.gov/pubmed/15551290
http://www.ncbi.nlm.nih.gov/pubmed/7527647
http://www.ncbi.nlm.nih.gov/pubmed/7527647
http://www.ncbi.nlm.nih.gov/pubmed/9688292
http://www.ncbi.nlm.nih.gov/pubmed/9688292
http://www.ncbi.nlm.nih.gov/pubmed/9688292
http://www.ncbi.nlm.nih.gov/pubmed/25897795
http://www.ncbi.nlm.nih.gov/pubmed/25897795
http://www.ncbi.nlm.nih.gov/pubmed/25897795
http://www.ncbi.nlm.nih.gov/pubmed/25243412
http://www.ncbi.nlm.nih.gov/pubmed/25243412
http://www.ncbi.nlm.nih.gov/pubmed/9116302
http://www.ncbi.nlm.nih.gov/pubmed/9116302
http://www.ncbi.nlm.nih.gov/pubmed/9116302
http://www.ncbi.nlm.nih.gov/pubmed/15020264
http://www.ncbi.nlm.nih.gov/pubmed/15020264
http://www.ncbi.nlm.nih.gov/pubmed/15020264
http://www.ncbi.nlm.nih.gov/pubmed/17803354
http://www.ncbi.nlm.nih.gov/pubmed/17803354
http://www.ncbi.nlm.nih.gov/pubmed/16409140
http://www.ncbi.nlm.nih.gov/pubmed/16409140
http://www.ncbi.nlm.nih.gov/pubmed/16409140
http://www.ncbi.nlm.nih.gov/pubmed/20494117
http://www.ncbi.nlm.nih.gov/pubmed/20494117
http://www.ncbi.nlm.nih.gov/pubmed/20494117
http://www.ncbi.nlm.nih.gov/pubmed/12951357
http://www.ncbi.nlm.nih.gov/pubmed/12951357
http://www.ncbi.nlm.nih.gov/pubmed/12951357
http://www.ncbi.nlm.nih.gov/pubmed/20565855
http://www.ncbi.nlm.nih.gov/pubmed/20565855
http://www.ncbi.nlm.nih.gov/pubmed/20565855
http://www.ncbi.nlm.nih.gov/pubmed/24823311
http://www.ncbi.nlm.nih.gov/pubmed/24823311
http://www.ncbi.nlm.nih.gov/pubmed/24823311
http://www.ncbi.nlm.nih.gov/pubmed/24823311
http://www.ncbi.nlm.nih.gov/pubmed/25604769
http://www.ncbi.nlm.nih.gov/pubmed/25604769
http://www.ncbi.nlm.nih.gov/pubmed/25604769
http://www.ncbi.nlm.nih.gov/pubmed/25604769
http://www.ncbi.nlm.nih.gov/pubmed/25961055
http://www.ncbi.nlm.nih.gov/pubmed/25961055
http://www.ncbi.nlm.nih.gov/pubmed/25961055
http://www.ncbi.nlm.nih.gov/pubmed/25961055
http://www.ncbi.nlm.nih.gov/pubmed/23492103
http://www.ncbi.nlm.nih.gov/pubmed/23492103
http://www.ncbi.nlm.nih.gov/pubmed/23492103
http://www.ncbi.nlm.nih.gov/pubmed/23492103
http://www.ncbi.nlm.nih.gov/pubmed/25038994
http://www.ncbi.nlm.nih.gov/pubmed/25038994
http://www.ncbi.nlm.nih.gov/pubmed/25038994
http://www.ncbi.nlm.nih.gov/pubmed/25038994
http://www.plefa.com/article/S0952-3278(13)00132-4/abstract
http://www.plefa.com/article/S0952-3278(13)00132-4/abstract
http://www.plefa.com/article/S0952-3278(13)00132-4/abstract
http://www.plefa.com/article/S0952-3278(13)00132-4/abstract
http://www.ncbi.nlm.nih.gov/pubmed/18422777
http://www.ncbi.nlm.nih.gov/pubmed/18422777
http://www.ncbi.nlm.nih.gov/pubmed/18422777
http://www.ncbi.nlm.nih.gov/pubmed/18422777
http://www.ncbi.nlm.nih.gov/pubmed/18322255
http://www.ncbi.nlm.nih.gov/pubmed/18322255
http://www.ncbi.nlm.nih.gov/pubmed/18322255
http://www.ncbi.nlm.nih.gov/pubmed/18322255
http://www.ncbi.nlm.nih.gov/pubmed/21372708
http://www.ncbi.nlm.nih.gov/pubmed/21372708
http://www.ncbi.nlm.nih.gov/pubmed/21372708
http://www.ncbi.nlm.nih.gov/pubmed/25682977
http://www.ncbi.nlm.nih.gov/pubmed/25682977
http://www.ncbi.nlm.nih.gov/pubmed/21941660
http://www.ncbi.nlm.nih.gov/pubmed/21941660
http://www.ncbi.nlm.nih.gov/pubmed/21941660
http://www.ncbi.nlm.nih.gov/pubmed/21941660
http://www.ncbi.nlm.nih.gov/pubmed/18508803
http://www.ncbi.nlm.nih.gov/pubmed/18508803
http://www.ncbi.nlm.nih.gov/pubmed/18508803
http://www.ncbi.nlm.nih.gov/pubmed/18508803
http://www.ncbi.nlm.nih.gov/pubmed/14684149
http://www.ncbi.nlm.nih.gov/pubmed/14684149
http://www.ncbi.nlm.nih.gov/pubmed/23668691
http://www.ncbi.nlm.nih.gov/pubmed/23668691
http://www.ncbi.nlm.nih.gov/pubmed/25973652
http://www.ncbi.nlm.nih.gov/pubmed/25973652
http://www.ncbi.nlm.nih.gov/pubmed/25973652
http://www.ncbi.nlm.nih.gov/pubmed/26044877
http://www.ncbi.nlm.nih.gov/pubmed/26044877
http://www.ncbi.nlm.nih.gov/pubmed/25737641
http://www.ncbi.nlm.nih.gov/pubmed/25737641

	Contents
	The Role of Lipids in Inflammation: Review of the Evolving Pathogenesis of Sickle Cell Disease
	Abstract
	Keywords:
	Introduction
	Inflammatory proteins and the role of membrane lipids

	Alteration in Membrane Lipids in Sickle Cell Disease
	Background Inflammation in Sickle Cell
	Future Therapeutic Implications
	Omega-3 fatty acids
	Fatty Acid Desaturases and their encoding genes
	Hydroxyurea and its analogues
	Inhibition of adhesion molecules
	Resolvins/Protectins pathway activators
	Targeting genes for transcription factors in the inflammatory pathway

	Declaration of Interests
	References:


