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Introduction
Let [ ]( ), 0,x t t T∈  is an observed trajectory, which is describing 

the stochastic evolution of some dynamic object. Mathematical 
model of this trajectory is defined as a random process, )(tξ . Where: 

⋅x(t) = X(t), X( )  is realization of the processξ .	

As a rule, we chose as a model random process with known 
characteristics. Direct use of this definition requires broad classes 
of these processes. On the other hand, this class includes Gauss and 
Markov processes. Let's introduce another definition of continuous 
mathematical models for the observed trajectory );0()( TCx ∈⋅  using 
nonlinear conversion. 

Definition
Mathematical model of observed trajectory x (t) is a pair ),( ξΦ , where 

x(t) (X( ))(t),= Φ ⋅  )(tξ  is a random process with known characteristics, 
Φ  is a reversible conversion in (0, t)c .

Let’s assume ,,..,1, nktt k ==  ,0,0)1( 11 =
−

−+= t
n

Tkttk  )))((( kk tXx ⋅Φ=  is 
a model of observed time series ....1 nxx     

Let’s call ξ  as a basic process of the model. Levy processes with
independent stationary increments have been considered as basic 
for models of time series (particularly financial) [1-4]. The next step 
in the development of the models is transition to diffusion processes. 
For example, diffusion model of stock price )(tS is obtained from the 
following considerations:

})(exp{)0()( ttwStS µσ += ,  X(t)=1n S(t),

Where (t)w is a standard Wiener process, σ  is volatility and interest 
rate, µ  is a constant. Then let’s propose the equation:

( ) S(t) ( ) ( )dS t dw t S t dtσ µ= +

Which can be interpreted as a stochastic equation Ito and its 
solution could be written as a geometric (economic) Brownian motion:
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For the model (1) of a stock price have been obtained a number of 
known results, including the Black-Scholes formula for a rational option 
pricing [5-8]. The main drawback of Levy processes (and diffusion) is 
their Markov. Thus, the Markov property:

===∆∈ −− })(,..,)()({ 1111 nnn atXatXtXP

))()(( 11 −− =∆∈= nnn atXtXP

A priori satisfies only the simplest physical phenomena. The 
absence of impact on processes in biology, economics, climate, etc. 
looks unconvincing. In this paper we propose a non-Markovian model 
of the time series.

Selection of the Base Process and its Properties
One of the most popular Markov models of time series is Gaussian 

random process, and fractional Brownian motion [9-11]. The demand 
of this process is caused by "convenient" properties, which are described 
below.

Fractional Brownian motion is defined as a Gaussian random 
process with characteristics: 

BH (t), )(
2
1)()(,0)0(,0)( 222 HHH

HHHH ststsBtBBtB −−+=Ε==Ε )(
2
1)()(,0)0(,0)( 222 HHH

HHHH ststsBtBBtB −−+=Ε==Ε

Note that with 5,0=H  we get a standard Wiener process.

Smoothness of the trajectories of the process )(tBH  is defined by 
the parameter H: almost all the trajectories satisfy the Holder condition: 

α−≤− stcsXtX )()( , ,H<α

This generalizes known Levy’s result for the Wiener process.

The increments of fbm )()( 12 tBtB HH − , )()( 34 tBtB HH − ,
1 2 3 4t t t t< < <  are form a Gaussian random vector with a correlation 

between the coordinates:
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For discrete time:
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We obtain the correlation coefficient:
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It means that increments are forming stationary (in the narrow 
sense) sequence [12].

Let's mention some several properties of fBm: 

1. Changing time scale is equivalent for changing of "amplitude” of 
the process:

Law(BH(at))= Law(aHBH(t)),

This equality denotes the coincidence of one-dimensional 
distributions of the processes:

BH(ta) and )(tBa H
H

This property is called self-similarity process and it is useful for 
analysis of time series.

2. Let's put in the formula (2): j=k+n. Then the correlation 
coefficient:

).2)1()1((
2
1),( 222 HHH

nkk nnn −−++=+ξξρ ),                      (3)

),( nkkn += ξξρρ ~ ,)12( 22 −− HnHH  		                  (4)

So the memory decreasing for increments has a power character; the 
increments are independence with

2
1

=H . With 
2
1

<H  the increments 
are form the sequence with short, 

2
1

>H  with a long memory. The 
sign of correlation coefficient nρ , which is defined by formula (4), 
depends form value H :

2
1,0 << Hnρ , 

2
1,0 >> Hnρ . For 2

1
<H  

sequence nξ  of increments fbm is calling pink noise and negativity of 
variations means the fast variability values. The process of fbm 2

1
<H  

is known as anti-persistent. For 
2
1

>H  sequence ny  of increments 
fbm is calling black noise and process of fbm is known as persistent. 
The properties of persistence have data which are describing some of 
the physical processes, such as solar activity [13,14]. 

In this paper, is selected fractional Brownian motion as a basic 
process.

The Statistics of Fractional Brownian motion
The estimation of Hurst exponent

Let’s observe the data:

1−= σ = −k H k k k
kx B ( ), y x x
n

Let’s random vector
),0(~),..,,( 21 Vyyy n ℵ=y , where the correlation matrix 

S
n

V H2

2σ
=   and elements Sjk of matrix HSS ≡  is defined by equality (3).

The limit theorems for sequence nyy ,..,1  were first proved by 
Peltier for statistics [15].
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From (5) is follows consistency estimates of parameters :,σH
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With known H.

Let’s propose new method of estimation Hurst exponent [16-18].

Let’s introduce the notation:

n
yyS

R
HQ

n

),(8,0)(
1

1
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=

Where matrix HSS ≡  is defined.

Statement

Statistic

1)(minargˆ −= HQH

Is a consistent estimator of the parameter H.

Proof
ε

 Is the canonical Gaussian vector with the following 
characteristics:

.dim),(),(),(,0 nvuvu ==Ε=Ε εεεε

Then
1
2y V= ε , therefore 
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And consequently the statistic

2
2ˆ nσ = ),()( 112 yy−− Sn H

And here statistics ),()( 112 yySn H −−  is an unbiased estimate of 
the parameter

2σ . Let’s introduce:

),(ˆ 112
2 yy−−= Sn H

nσ  				                 (7)

With calculating the dispersion
421242

2 ),(ˆ σσ −Ε= −− yySnD H
n

Use the formula for integration by parts for the Gaussian measure 
[19] and get

02ˆ
4

2
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n
D n
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n2σ̂  Is a consistent parameter estimation ofσ .

The equalities (6,7) are form the system, from which follows the 
relation: 
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This proves the statement. The efficiency of proposed estimation 
method has been tested by numerical experiment [16].

The limit theorems for some statistics

The limit theorems for statistics from increments of fractional Brownian 
motion have been proved in works of Nourdin I and others [20-23].
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These results allow us to estimate the adequacy of model with the 
basic process-fractional Brownian motion.

Construction and Checking the Adequacy of Model
It requires initial analysis of increments{ }nyy ,..,1  to determine the 

conversionΦ .

In particular, is it necessary to estimate the one-dimensional 
distribution of sample and correlation. These actions are possible only 
with a large sample size (n>5000). We propose new empirical method 
of transformation increments { }nyy ,..,1   in { }nzz ,..,1  for small sample.

The first stage of approximation is an empirical method for testing 
the hypothesis about normality increments of model. The criterion may 
be Gaussian value "kurtosis" (excess kurtosis):
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Which is equal 
π
2

 for Gaussian model. If nd  is significantly 

different from 
π
2 , let's replace the time series 11.. −nyy  by the new 

sequence 11.. −nzz .

The general idea of approximation is an one-dimensional functional 
transformation g of each increment ky , where g is an increasing odd 
function, 
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Where )( kk ygz =  is assumed as a Gaussian random value. Let’s 
demonstrate proposed algorithm with g as a power function. Assume
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Where the parameter 𝛌 is defined from the equation. Thus, the 
proposed approximation leads to the following model of original time 
series:
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If we'll assume that values of sequence { }nzz ,..,1 are increments of 
fBm, let’s calculate Hurst exponent by the following algorithm, which 
shows proposed method:

1) Construct the statistic:
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n
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2) Calculate the matrix
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Hs , where HS  is a correlation matrix of 
increments:
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The statistics Q is calculating for difference values of Hurst exponent 
with step (0, 0.5-1) and:

min,1)( →−HQ  1= −Ĥ arg min Q( H )  		           (12)

3) The testing of hypothesis T= (statistics nzz ,..,1  which obtained 
by transformation (11) of real data are simulated by increments from 
fractional Brownian motion). The algorithm with known H is the 
following. Denote
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The decision about hypothesis T is accepted by comparing the real 
values of the statistics with their theoretical limit values. Let's determine 
deviation from the limit values for statistic nA .
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Where 21,ββ  are quantile distributions from 21, FF  which 
corresponding to the selected significance level .1,0=α
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The Real Examples
Let’s consider examples of real nature:

The first example: the monthly data of market rate of the 
Bundesbank (Germany) (http://www.bundesbank.de) for 2003-2012 
(120 data) (Figure 1).

The second example: 1020 data of exchange rate EUR / USD for 
2011-2014 (http://www.banque-france.fr) (Figure 2).  

The third example: The oscillation of waves in the North Atlantic, 
10.1980-10.2014 409 data (Figures 3 and 4).

The Comparative Analysis of Used Models
Let's compare the time series model (approximation of fractional 

Brownian motion) with known models and estimate the quality of 
modeling. Note that the choice of the quality criterion is dependent 
from the type of model.

The values of exchange rate, Banque de France. Let's compare the 
effectiveness of approximation method with other models for real 1020 
data [21].

For modeling of selected values are used these models:

•	 Autoregression,

Autoregression with moving average (ARMA) ),( qp ,

Autoregressive with integrated moving average ),,( qdp ,

Autoregressive moving average (ARMA) ),( qp .

These methods have been selected, because after using the special 
tests for statistical data, we've revealed high autocorrelation value and 
existence of a trend.

Based on analysis of values of the constructed partial autocorrelation 
and autocorrelation function of data series, the order AR (1) model may 
be in the range from 1 to 5. The model AR (1) is given:

=+−+= )()1()( 10 kkyaaky ε )1(908,0101,0 −+= ky             (15)

Where )(ky  is a basic variable; )(kε  is a random process. 
Сharacteristics of the adequacy and quality for short-term forecasts for 
the training sample had the following values:

816,02 =R , 2 52 591=∑ ke , , 1 957=DW , , Mard=10,71, 069,0=U
Some deterioration of forecasting is obtained by expansion of the 

order of autoregression for two:
=+−+−+= )()2()1()( 210 kkyakyaaky ε

)2(111,0)1(0047,1176,1 −−−+= kyky                              (16)

Figure 1: The monthly data of market rate of the Bundesbank (Germany).

http://www.bundesbank.de
http://www.banque-france.fr
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R2=0,820, 771,502 =∑ ke 50.771, DE=1,57 , MARD=11,197, 071,0=U .
=++++−+−+= )()5()1()( 3

8
2

76510 kkakakakyakyaaky ε

−−+−+= )5(005,0)1(743,0957,3 kyky
2 30,035 0,00036 1,24 0,6k k E k− + − − 		               (17)

844,02 =R , 
2 43,841=∑ ke , 1,720=DW , 814,0=ÑÊÏ , 

783,5=ÑÀÎÏ , 036,0=U

Thus, mean absolute relative difference has been reduced from 
11.20% to 5.78% after introducing the trend in model. Let’s construct a 
model with autoregressive moving average:

=+−+−−+−+= )()2()1()5()1()( 21210 kkbkbkyakyaaky εεε

Figure 2: The data of exchange rate EUR/USD, Banque de France.

Figure 3: The oscillation of waves in the North Atlantic.

=10.82 +−+−+= )5(134,0)1(757,082,10 kyky

)2(271,0)1(209,0 −+−+ kk εε 		               (18)

However, its characteristics aren't better than in the previous case (the 
model with the trend), except for Durbin-Watson statistic (Table 1):

832,02 =R , 931,462 =∑ ke 4,6931, DW 943,1=DW , MARD=10,611, 068,0=U

Thus, the best is a structural model of the process from all 
constructed mathematical models, which takes into account explicitly 
the trend of process and vibrations (MARD=5.78%) [17-19]. This is 
quite a logical result, because the structural models are describing these 
processes with a higher degree of adequacy than others. As expected, 
the introduction of a moving average model didn't improve the quality 
as compared with a simple model AR (1). The value of the Durbin-
Watson statistic for the approximation model is more closer to 2 than 

Model R2 ∑ 2
ke

DW MARD Coefficient Teil
АR (1) 0,816 52,591 1,785 10,713 0,069
AR (5) 0,820 50,771 1,957 11,197 0,071
АR (5) «plus» cubic trend 0,844 43,842 1,720 5,783 0,036
Approximation method — — 1,987 5,691 —

Table 1: Comparative characteristic of models. Exchange rate data, Banque de France.
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the other models, the value of MARD is practically coincides with its 
value for the AR (5) "plus" cubic trend.

We consider the primary data processing as a calculation of linear 
approximation of the trend of initial data and obtaining new sequence 
in every example{ }kx , 0=x .

The following steps are calculation the increments kkk xxy −= +1 , 
construction the new sequence { }nzz ,..,1  by formula (11), the estimation 
of Hurst exponent by formula (12), checking the quality of approximation 
by formula (10). The results of calculations are shown in Table 2.

Conclusion
For all examples the approximation has antipersistent character 

(H<0.5) and it's adequate, if the conditions are satisfied [14].

 

Initial data

Analysis of the time series and  the selection of preprocessing method

The conversions

The logarithm of data Approximation of trend Other methods

The calculation of power characteristics and kurtosis

The decision about the Gaussian approximation

The approximation of increments with fbm

Estimation of Hurst exponent and volatility

Checking the quality of approximation

The forecast of transformed data

The analysis and using the results

Figure 4: The block diagram.

Real data Ĥ nA nB A 1β 2β

The monthly data of Bundesbank 0,4 -19,1 -0,8 -16,3 58,3 —
Exchange rate €/$,2011-2014, Banque de France 0,4 -1,72 -1,61 -1,51 5,28 —

The oscillation of waves in the North Atlantic. 0,1 -3,44 -6,38 -3,575 9,883 —

Table 2: The values of control statistics and parameters of limit distributions for Examples 1-3.
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