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Introduction
The Solute carrier transporters (SLCs) are important membrane 

proteins responsible for cellular influx of a wide range of molecules. 
They have been widely studied by researchers especially in the renal and 
hepatic physiology field for a long period of time. The Organic anion 
transporting polypeptides (OATPs) encoded by SLCO gene family, 
Organic anion transporters (OATs) and Organic cation transporters 
(OCTs) falling into the SLC21 gene family are the most important SLC 
subfamilies relevant to drug performance.

OATs, OCTs and OATPs widely distribute throughout the 
epithelium of human key organs including the kidney, liver and 
intestine, where they facilitate the access of many endogenous and 
exogenous substances to specific tissues (Table 1) [1-3]. Therefore, 
these transporters are broadly recognized to be clinically important 
in the absorption, distribution and elimination of drugs [4]. And 
pharmaceutical inventors are required by the regulatory authorities to 
evaluate the potentials of drug-drug interactions through the essential 
Organic anion/cation transporters in the pre-clinical phase of drug 
development.

Herbal medicines derived from plants, fruits and vegetables are 
widely adopted in the world especially in many Asian countries. They 
have been considered to be safe by the general public. However, there 
are reports of unexpected adverse events with the co-administration of 
herbal medicines and pharmaceutical agents. Arising knowledge in the 
recent decade indicated that many herbal compounds are modulators 
of OATs, OATPs and OCTs, which significantly impact on cellular 
uptake of other transporter substrates. With an increasing use of 
herbal medicines, it is plausible that therapeutic toxicities likely occur 
due to drug substrates competing for specific transporters with herbal 

compounds. Therefore, knowledge about the interactions of natural 
compounds on the Organic anion/cation transporters is essential to 
prevent alterations of the performance of clinically important drugs 
[5]. In this review, tissue distribution, substrate specificity, clinical 
significance and interactions with herbal compounds are described for 
those well characterized OAT, OCT and OATP isomembers.

Organic Anion Transporters
OATs are known to mediate uptake of water-soluble, negatively 

charged organic molecules with low molecular weight such as steroid 
hormones and their conjugates, biogenic amines, numerous drugs and 
toxins [6,7]. So far, there are nine human OAT isoforms identified with 
OAT1, OAT2, OAT3 and OAT4 better characterized [1,6].

Tissue distribution

OAT1 was first discovered as a para-aminohippurate (PAH) 
transporter in 1997 [7-9], which is abundantly expressed at the 
basolateral membrane of renal proximal tubular cells [10-15]. OAT2 
was found to be predominantly expressed in the liver and also located 
at the blood-facing membrane of renal tubular cells [16,17]. OAT3 is 
widely expressed in the kidney, brain and liver [18]. OAT4 distributes at 
the apical membrane of renal proximal tubular cells and the basolateral 
membrane of syncytiotrophoblasts in the placenta [12,19-22]. OAT5 
and OAT7 are found in human liver, while OAT10 distributes at the 
apical membrane of renal proximal tubules cells [23-25].
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Substrate specificity 

OATs are responsible for the transport of lower molecular mass 
molecules compared to OATPs. Their endogenous substrates include 
α-ketoglutarate, prostaglandins and cyclic guanosine monophosphates 
[9,26,27]. Additionally, they are capable of mediating the uptake of 
therapeutic drugs such as NSAIDs, antivirals and anti-cancer agents. 
For example, OAT3 is responsible for the uptake of cimetidine, a 
histamine H2-receptor antagonist widely used in treating heartburn 
and peptic ulcers, as well as that of methotrexate, an anti-metabolite and 
anti-folate drug frequently used to manage cancers and autoimmune 
diseases [28].

Clinically significance

In vitro and in vivo studies have shown that OAT1 and OAT3 are 
primarily responsible for uptake of common drug substrates from 
blood to renal proximal tubular cells [29]. Due to their broad substrate 
specificities, OAT1 and OAT3 play essential roles in renal excretion 
of many drugs and toxins. For instance, the drug-drug interaction 
between probenecid and methotrexate was discovered in 1970s [30,31], 
which was later identified as probenecid-induced down-regulation of 
methotrexate transport via OAT1 and OAT3 [32].

The interactions of herbal compounds with OATs

Several previous studies of others and us have demonstrated that 
various natural compounds are potent inhibitors or substrates of OATs 
(Table 2). OAT1 and OAT3 are the two well-known OAT isoforms 
mainly distributed at the blood-facing basolateral membrane of the 
renal proximal tubular cells, where they facilitate the renal excretion 
of a wide range of substances; while OAT4 is one of the key players 
of renal re-absorption present at the luminal-facing apical membrane 
of the proximal tubule. The transport activities of these three OAT 
isoforms are of the most interests to researchers with many studies 
extensively evaluated their roles in drug performance. 

Our laboratory conducted a series of studies to explore the 
interactions of clinically important natural compounds with thirteen 
essential SLC transporters that are best characterized so far. These 
transporters broadly cover the ranges of OATs, OATPs and OCTs/
OCTNs and greatly influence the pharmacokinetic performance 
of many pharmaceutical agents. In our studies, we identified that 
ursolic acid, the active component of Punica granatum Linnaeus 
(pomegranate), was found to inhibit OAT3 transport activity [19]. 
Due to the anti-oxidant property and anti-diabetic potentials of 
pomegranate, products derived from this fruit are very popular world-
widely, the increasing use of which might significantly impact on 
therapies involved with drugs that are substrate of OAT3. In addition, 
wogonin and baicalein, the two major active ingredients of Scutellaria 
baicalensis were shown to markedly inhibit OAT1-, OAT3- and OAT4-
mediated substrate uptake [33]. Since these compounds commonly 

used in treating inflammation, hypertension and many infections [34], 
such finding is also clinically significant. 

Wang et al. revealed that Lithospermic acid (LSA), salvianolic acid 
A (SAA) and rosmarinic acid (RMA) that are enriched in commercial 
Danshen preparations, are potent inhibitors of OATs. In details, RMA 
was shown to significantly down-regulate the transport activity of 
OAT1 and OAT3; while LSA and SAA was found to potently interact 
with OAT3 [35]. Since Danshen has been long used in cardiovascular 
treatment, there might be herb-drug interactions in situations of 
co-administration of Danshen with clinical agents known to be 
substrates of these OATs. In another study of this group, the authors 
demonstrated that rhein, the main component of Rheum sp. in treating 
osteoarthritis and diabetic nephropathy, selectively inhibit the uptake 
of OAT1 and OAT3; while it has much less impairment on OAT4-
mediated substrate influx [36]. Gallic acid, a major component of many 
herbal products has also been demonstrated to be a potent inhibitor of 
hOAT1 and hOAT3, the plasma concentration of which is sufficient to 
cause drug-herb interactions [37]. 

Grapefruit juice has long been implicated in drug-herb interactions 
of therapies. The main constituents of grapefruie juice are flavonoids, 
five of which including morin, silybin, naringin, naringenin and 
quercetin have been explored for their interactions with OAT1 and 
OAT3 [38]. Morin and silybin are potent inhibitors of OAT1; while all 
the five flavonoids tested in this study has less pronounced interactions 
with OAT3. 

Nephrotoxicity related incidents have been reported following 
consumptions of common herbal products made from Aristolochiaceae 
[39-41]. Aristolochic acids (mainly AA-I and AA-II) contained in these 
herbal medicines were later found to be associated with these adverse 
effects. Both AA-I and AA-II potently inhibit the substrate uptake 
mediated through OAT1 and OAT3 as well as moderately impact on 
that of OAT4 [42]. 

Interestingly, the major metabolites and/or derivatives of various 
natural compounds were also reported to be inhibitors or substrates 
of OATs. For instance, 3-monoglucuronyl-glycyrrhetinic acid 
(3MGA), one of the major metabolites of glycyrrhizin (GL), has been 
demonstrated to be a substrate of OAT1 and OAT3 [43]. And GL is 
the main component of the root of glycyrrhiz widely used in treating 
chronic hepatitis C and gastric ulcers in Japan and Europe [44,45]. It 
is noteworthy that steviol (the aglycone metabolite of the noncaloric 
natural sweetener Stevioside) but not its parental compound, markedly 
inhibits the transport activity of OAT1 and OAT3 [46]. 

Organic Anion transporting peptides (OATPs)

OATPs govern cellular uptake of amphipathic molecules with 
molecular weights of more than 350Da [6]. They are widely distributed 
in many tissues, including the blood-brain-barrier, choroid plexus, 
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Table 1: Localization of the major SLC transporters in human epithelium [1-3].
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of albumin-bound bilirubin leading to severe neonatal jaundice and 
unconjugated hyperbilirubinemia (Gilbert’s Syndrome, affecting 2-5% 
of the population) [66,67]. Moreover, it has been suggested that OATP 
dysfunction is a significant pathological component of fibrosis [68], 
inflammatory bowel disease [69] and cholestasis [70]. 

Several genetic variants coded by OATP polymorphisms possess 
decreased or abolished transport function. Naturally occurring 
variants of OATP1A2 have been implied to influence the disposition 
of methotrexate, imatinib and central nervous drug entry [50,61,71]. 
Several single nucleotide polymorphisms of OATP1B1 have been 
indicated to be associated with altered pharmacokinetic performance 
of drugs such as pravastatin and nateglinide [72-76]. Research also 
demonstrated that natural mutantions in OATP2B1 gene might be 
important in pharmacokinetics of fexofenadine [77].

The interactions of herbal compounds with OATPs: OATP1B1, 
OATP1B3, OATP2B1 are in charge of the uptake of molecules into 
the hepatocytes to initiate the subsequent biliary excretion and/
or drug metabolism; while OATP1A2 assists in the reabsorption of 
clinically important and frequently prescribed drugs from the bile 
duct in liver. OATP1A2 is also involved in the reabsorption from or 
the secretion of xenobiotics into urine in the kidney and OATP2B1 
facilitates the intestinal absorption of many drugs at the apical 
membrane of enterocytes. Therefore, these OATP isomembers are 
essential to drug absorption, distribution and elimination. Up to 
date, a wide range of herbal compounds has been shown to possess 
inhibitory effects on OATP-mediated uptake (Table 3). The findings 
have profound significance in clinical settings as to prevent drug-drug/
herb interactions through these transporters in therapies.

Our group recently reported that Baicalein and baicalin isolated 
from Scutellaria baicalensis have potent inhibitory effect on OATP1B3 
uptake; while baicalin can also impair the substrate uptake mediated 
through OATP2B1 [33]. And the active components of pomegranate, 

intestine, kidney, placenta and testes [47]. Until now, 11 human OATP 
isoforms have been identified, which are divided into six subcategories 
(OATP1-6). 

Tissue distributions: OATP1A2 is the first classic OATP 
membrane isolated in human with tissue localization in multiple 
organs [48,49]. OATP1A2 is expressed in cholangiocytes and is 
involved in the reabsorption of xenobiotics excreted into the bile [50]. 
It is also expressed at the apical membrane of the distal nephron [50], 
where it is responsible for the reabsorption from or the secretion of 
xenobiotics into the urine. OATP1B1 and OATP1B3 are liver specific 
OATP isoforms [51-53]. OATP2A1 is ubiquitously located throughout 
the body as a prostaglandin transporter [54,55]. OATP2B1 is another 
isoform with wide tissue distribution [56]. OATP4C1 is a renal 
specific isoform with high-affinities to digoxin and thyroid hormones 
[57]. Among all the OATPs, OATP1A2, OATP1B1, OATP1B3 and 
OATP2B1 are well characterized with regards to drug performance 
[58]. 

Substrate specificity: OATPs have a wide spectrum of substrates, 
the majority of which are large hydrophobic anions. The prototypical 
endogenous substrates of OATPs include bile acids, thyroid hormones, 
prostaglandins, eicosanoids, steroids and their conjugates [59]. For 
instance, OATPs mediate the hepatic uptake of microcystin, the toxin 
in blue-green algae that is a major water-borne pollutant in the world 
[60]. The classic exogenous drugs that transported through OATPs 
are imatinib, fexofenadine, methotrexate, HIV protease inhibitors and 
statins [6,61].

Clinical significance: OATPs expression has been found to be 
altered in disease states. Previous studies have shown that mRNA 
expressions of OATP1A2, OATP1B1 and OATP1B3 were decreased in 
the liver under conditions of cholestasis [62-64]. OATP1B1 expression 
is reduced in patients with severe versus mild viral hepatitis [65].

Defective genes that encode variant OATPs may impair the clearance 

Transporter Herbal compound Substrate/ Inhibitor
IC50

(µM)

Ki

(µM)

Km

(µM)
Reference

OAT1 Baicalein Inhibitor 11.8 ± 6.2 ND ND [33]
Wogonin Inhibitor 5.4 ± 2.8 ND ND [33]

Rosmarinic acid Inhibitor ND 0.35 ± 0.06 ND [36]
Aristololchic acids (AA-I) Inhibitor 0.44 ± 0.08 0.08 ± 0.15 ND [42]
Aristolochic acids (AA-II) Inhibitor 1.06 ± 0.09 ND ND [42]

Rhein Inhibitor 0.0771 ± 0.0055 0.0715 ± 0.0052 ND [36]
Gallic acid Inhibitor 1.24 ± 0.36 1.08 ± 0.26 ND [37]

3-monoglucuronyl-glycyrrhetinic acid Substrate ND ND 50.9 [43]
OAT3 Ursolic acid Inhibitor 18.9 ± 8.20 ND ND [19]

Baicalin Inhibitor 13.0 ± 5.1 ND ND [33]
Baicalein Inhibitor 2.4 ± 1.3 ND ND [33]
Wogonin Inhibitor 1.3 ± 0.3 ND ND [33]

Rosmarinic acid Inhibitor ND 0.55 ± 0.25 ND [36]

Lithospermic acid Inhibitor ND 0.59 ± 0.26 ND [36]

Salvianolic acid A Inhibitor ND 0.16 ± 0.03 ND [36]
Aristololchic acids (AA-I) Inhibitor 0.65 ± 0.08 0.84 ± 0.10 ND [42]
Aristolochic acids (AA-II) Inhibitor 1.28 ± 0.18 ND ND [42]

Rhein Inhibitor 0.0084 ± 0.0025 0.0077 ± 0.0074 ND [36]
Gallic acid Inhibitor 9.02 ± 3.24 8.44 ± 3.03 ND [37]

3-monoglucuronyl-glycyrrhetinic acid Substrate ND ND 21.3 [43]
OAT4 Baicalin Inhibitor 15.6 ± 5.50 ND ND [33]

ND: Not determined. 
Table 2: The interactions of herbal compounds with human OATs.
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ursolic acid and gallic acid significantly inhibit OATP2B1 and 
OATP1B3 activities [19]. We also showed Icariin, a natural prenylated 
flavonol glycoside popularly used to treat sexual dysfunction in 
males and osteoporosis remarkably impairs the substrate uptake via 
OATP1B1, OATP1B3 and OATP2B1, which observation is consistent 
with the early study [78,79]. 

The modulated functions of OATPs have also been widely reported 
in a number of early studies. The flavonolignans silybin A, silybin B and 
silychristin isolated from hepatoprotective Silybum marianum (milk 
thistle) are all capable of down-regulating the activities of OATP1B1, 
OATP1B3 and OATP2B1 [80]. Uptake of OATP1A2, OATP1B1 and 
OATP2B1 could be impaired by two of the flavonols enriched in Green 
Tea (Camellia Simensis), epicatechin gallate (ECG) and epigallocatechin 
gallate (EGCG) [81]. Both flavonols were also confirmed to be substrates 
of OATP1A2 and OATP1B3 but not of OATP1B1 or OATP2B1 
[81]. Because of the large consumption of green tea world-widely as 
to its reputed health benefits, such findings have profound clinically 
significance widely influencing pharmaceutical regimens. The wide 
screening of flavonoids present in Ginkgo biloba and grapefruit showed 
that these compounds have competitive inhibitions on substrate uptake 
mediated by OATP1B1 and OATP1B3 with quercetin, apigenin and 
naringenin being the most potent [82]. In the recent study of Glaeser et 

al., quercetin showed a significantly increased uptake into OATP1A2-, 
OATP2A1- and OATP2B1-expressing cells; while Kaempferol was not 
likely a substrate of all these transporter isoforms [83].

Literatures also revealed several other natural compounds impair 
the activities of OATP isoforms. Dioscin is a natural spirostane saponin, 
which can be obtained from many oriental vegetables and traditional 
medicinal plants with anti-hepatitis, anti-tumor and anti-fungal effects. 
Literature revealed that dioscin is a potent substrate of OATP1B3 with 
high binding affinity [84]. Periplocin is the root of Periploca sepium 
Bge used in ancient china for alleviating rheumatic conditions. Its 
tumor suppressive and anti-chronic heart failure has recently been 
recognized. Liang et al. implied that OATPs (OATP1A2/1B1/1B3/2B1) 
might be involved with the intestinal absorption and biliary excretion 
of such compound [85], but further studies will be required to explore 
the interactions of periplocin with these OATP isoforms. 

Similar to the cases of OATs, metaboliste and/or derivatives of 
natural compounds have also been indicated to interact with OATPs, such 
as the liquorice metabolite 3MGA being a substrate of OATP4C1 [43]. 

Organic Cation Transporters (OCTs)

Besides OATs, the SLC22A gene family also encodes the Organic 

Transporter Herbal compound Substrate/ Inhibitor
IC50

(µM)

Ki

(µM)

Km

(µM)
Reference

OATP2B1 Ursolic acid Inhibitor 11.0 ± 5.0 ND ND [19]
Baicalin Inhibitor 5.6 ± 3.2 ND ND [33]

Baicalein Inhibitor ND ND ND [33]
Wogonin Inhibitor ND ND ND [33]

Icariin Inhibitor 6.4 ± 1.9 ND ND [78]
Silybin A Inhibitor 4.5 ND ND [80]
Silybin B Inhibitor 0.8 ND ND [80]

Silychristin Inhibitor 3.6 ND ND [80]
OATP1B3 Gallic acid Inhibitor 1.6 ± 0.6 ND ND [19]

Baicalin Inhibitor 13.7 ± 3.6 ND ND [33]
Baicalein Inhibitor 7.7 ± 2.4 ND ND [33]
Wogonin Inhibitor 7.7 ± 3.1 ND ND [33]

Icariin Inhibitor 3.0 ± 1.3 ND ND [78]
Silybin A Inhibitor 2.7 ND ND [80]
Silybin B Inhibitor 5.0 ND ND [80]

Silychristin Inhibitor 36.4 ND ND [80]
Epicatechin-gallate Substrate ND ND 34.1 [81]

Epigallocate-chin gallate Substrate ND ND 13.2 [81]
Dioscin Substrate ND ND 2.08 ± 0.27 [84]

OATP1B1 Baicalin Inhibitor 121.0 ± 9.3 ND ND [33]
Baicalein Inhibitor 172.6 ± 6.3 ND ND [33]
Wogonin Inhibitor >200 ND ND [33]

Icariin Inhibitor 21.9 ± 2.0 ND ND [23]
Silybin A Inhibitor 9.7 ND ND [80]
Silybin B Inhibitor 8.5 ND ND [80]

Silychristin Inhibitor 9.0 ND ND [80]
Periplocin Inhibitor ND ND ND [85]

Epigallocatechin gallate Inhibitor 7.8 ND ND [81]
OATP1A2 Epicatechin gallate Substrate 10.2 ND 10.4 [81]

Epigallocatechin gallate Substrate 54.8 ND 18.8 [81]
Quercetin Substrate ND ND 2.3 ± 1.5 [83]

OATP4C1 3-monoglucuronyl-
glycyrrhetinic acid Substrate ND ND 33.1 [43]

ND: not determined
Table 3: The interactions of herbal compounds with human OATPs.
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cation transporters (OCT1, OCT2 and OCT3) as well as the organic 
cation/carnitine transporters (OCTN1 and OCTN2). Like other SLC 
transporters, OCTs and OCTNs are also responsible for the uptake of 
numerous endogenous and exogenous substrates [6]. 

Tissue distribution: In common, OCT1, OCT2 and OCT3 are 
expressed in a variety of tissues such as the intestines, placenta and lung. 
OCT1 is mainly expressed at the basolateral membrane of hepatocytes 
[86]; while OCT2 protein is localized to the apical membrane of the 
distal convoluted tubules [87]. OCT3 is abundantly distributed in brain 
tissues. OCTN1 and OCTN2 have their tissue localization to the heart, 
placenta, skeletal muscle, kidney and pancreas [6]. 

Substrate specificity: OCTs facilitate the movement of 
small cationic molecules including catecholamines, monoamine 
neurotransmitters, 1-methyl-4-phenylpridinium (MPP+) and about 
half of the therapeutic agents used in human like tetraethylammonium 
(TEA) [6]. OCTN1 and OCTN2 have extensive physiological roles 
in mediating bidirectional movements of important endogenous 
substrates, eg. both OCTN1 and OCTN2 are involved in the transport 
of carnitine and OCTN1 also facilitates the uptake of acetylcholine [88-
90]. TEA is the common drug substrate of both OCTN1 and OCTN2; 
while the mushroom metabolite L-ergothioneine is a specific substrate 
of OCTN1 [91-93]. 

Clinical significance: OCT1 have been extensively studied for 
their associations with the pharmacokinetics of anti-diabetic drug 
metformin as well as the pharmacological responses of front-line anti-
cancer agent imatinib [94-107]. OCT2 has also been implicated in 
pharmacokinetics of various drugs [108-111].

Deficiency of the diet component L-carnitine leads to 
immunosuppression and intestinal inflammation. Since L-carnitine 
is a shared substrate of OCTN1 and OCTN2, genetic polymorphisms 
of OCTN1 and OCTN2 have been intensively explored for their 
associations with many common gastrointestinal disorders such as 
inflammatory bowel disease, colorectal cancer and Crohn’s disease 
[112-115]. Additionally they have also been implicated in other 
prevalent diseases like rheumatoid arthritis [116-119]. 

The interactions of herbal compounds with OCTs and OCTNs: 
Limited information is available with the influence of natural 
compounds on the transport activity of OCTs and OCTNs. OCT3 
activity can be down-regulated in the presences of wogonin [33]. And 
quercetin is a substrate of OCT1; while its structurally similar flavonoid 
kaempferol is not a substrate of OCT1 [83] (Table 4). As mentioned 
above, the essential dietary component L-carnine can be transported 
by both OCTN1 and OCTN2 [89,90]; while L-ergothioneine enriched 
in mushrooms selectively interact with OCTN1 [91-93]. 

Perspectives

Consumption of herbal products continuously increases in the 
world due to their reputed health benefits. They are often considered as 
supplementary and/or alternative to conventional therapies. In recent 
years, co-administration of drugs with herbal remedies widely raises 
concerns due to numerous cases of drug-herb interactions. Therefore 

it is essential to review potential drug-drug/herb interactions as well as 
the underneath molecular mechanisms so as to prevent serious adverse 
effects in therapies. 

SLC transporters especially OATs, OATPs and OCTs are widely 
expressed throughout the body and responsible for the cellular influx 
of many endogenous and exogenous substrates including numerous 
clinically important drugs and natural compounds. Drug-drug/herb 
interactions often occur when drugs competing specific transporter 
proteins with other drugs or herbal compounds. Limited knowledge 
about these transporter-mediated substrate interactions largely 
impedes the therapeutic optimization to avoid unfavorable adverse 
events. Studies to elucidate the influence of herbal preparations 
(as mixtures) on drug performance are not sufficient to reveal the 
problematic components leading to side effects, which then restrict the 
clinical applications of many herbal medicines. Therefore, exploring the 
interactions of individual herbal compounds with specific transporters 
should be warranted in order to serve better in developing safer and 
more efficient treatment strategies. Considering herbal products often 
have multiple constituents, the potential cumulative influence of herbal 
compounds on drug performance mediated through transporters 
could then be developed so as to better predict therapeutic outcomes 
in patients. 
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