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Introduction
High Field Asymmetric waveform Ion Mobility Spectrometry 

(FAIMS) [1], also known as Differential Mobility Spectrometry (DMS), 
has evolved as a useful method to separate ionized species in the 
gaseous phase [2]. All ions have a characteristic mobility value, which 
depends on the Electric field (E-field) and the surrounding gas mixture. 
The ion drift velocity is given by the product of the ion mobility and 
the E-field (v = KE). For low electric fields below approximately 1500 
V/cm at atmospheric pressure [3], the mobility coefficient value does 
not change significantly as the E-field strength is varied. Traditional 
drift tube Ion Mobility Spectrometry (IMS) devices also operate in this 
regime. A sample is ionized and propelled through the drift tube using 
a gradient of electric fields. Only ions with a specific mobility value 
reach the detector(s) and are measured at corresponding drift times.

If the E-field is increased to the “high” strength regime above 1500 
V/cm at atmospheric pressure, the relationship between the ionic 
mobility coefficient and the ratio of electric field strength to gas number 
(E/N) becomes uniquely nonlinear for different ions. FAIMS, shown 
in Figure 1, takes advantage of these phenomena by using a rapidly 
time-varying electric field which varies from low to high strength [4]. 
Typical FAIMS devices feature a flow channel which includes two 
parallel planar or annular electrodes separated by a gap. The electric 
field is created by applying a waveform between the electrodes: one 
electrode is grounded while a high-frequency AC square waveform is 
applied to the other electrode. One cycle of the waveform induces an 
electric field which is initially high strength, and it is then switched to 
a low strength field in the opposite direction. The time period of each 
phase is specified such that the product of the electric field and the time 
period for which it is applied has a net value of zero over a single cycle. 
Gas-phase ionized sample species are swept through the drift tube by 
a constant carrier gas, while the E-field causes them to be displaced 
orthogonally to the gas flow through the device. Since an ion will have 
a different mobility in the high and low strength regimes, the ion will 
have a net displacement toward one of the electrodes over each cycle of 
the waveform. This displacement is counterbalanced by the application 
of a DC Compensation Voltage (CV). Each CV value allows ion(s) with 
that corresponding specific differential mobility to pass through the 
drift tube and reach the ion detector(s). The CV can also be specified to a 
value characteristic of a certain ion of interest to achieve an ion filtering 
regime, or it can be swept across a range to record abundance of all 
ion species that are present in a sample. Dispersion plots which show 
ion abundance for scans of CV at different values of the asymmetric 
waveform amplitude are commonly used to display sampled data. This 
usually provides extremely unique information for different chemicals, 
potentially leading to avenues for unique compound identification.

Frequently, FAIMS or DMS separation methods can be connected 
in series with other orthogonal analytical chemistry separation and 
detection techniques. For example, Gas Chromatography (GC) has 
been used to pre-separate complex analyte mixtures prior to FAIMS 
further separation and detection [5-8]. It has been shown that analytes 
of different categories such as aldehydes, ethers, esters, and alcohols 

have different retention times in the GC [5]. As components exit the 
GC column at a certain retention time, they enter the FAIMS drift tube 
where a range of compensation voltage is scanned. For each analyte, 
there will be a narrow band of CV values for which ions are able to 
traverse the drift tube and reach the detector. Ion abundance can be 
visualized as a 3D plot of compensation voltage and GC retention time. 
Abundance peaks are directly related to the concentration of a specific 
analyte in the sample. Multiple data analysis techniques [6,7,9,10] have 
been used to identify ions and make distinctions by comparing the 
generated data with that of previously-obtained or calibrated results.

FAIMS and other atmospheric-pressure IMS techniques have also 
been successfully applied as a pre-filter for Mass Spectrometry (MS) 
systems [11-14]. An outlet at the end of the drift tube provides a path 
to the MS system, with pumps along the path to lower the pressure 
of the ion-carrying gas prior to injection. Ion funneling can be used 
to focus the flow into a narrow stream for the MS [15]. Cylindrical 
FAIMS systems offer the advantage of reduced ion loss at the FAIMS/
MS interface [16], however planar geometry with the FAIMS drift tube 
operating at atmospheric pressure has also been used [13].

Applications
Devices based on IMS have been implemented in many diverse 
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Figure 1: FAIMS overview.
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applications. Traditionally IMS has been useful as a method for 
detecting explosive related compounds, and IMS devices are being 
widely employed in airports throughout the world [17]. Many 
explosive compounds form stable negatively-charged ions through 
ionization at atmospheric pressure, which IMS devices can effectively 
separate and detect. FAIMS detection of various explosive compounds 
is extremely specific and sensitive, with an example limit of detection as 
low as 80 parts-per-trillion (ppt) for 2,4,6-trinitrotoluene (TNT) [18]. 
In addition to detecting explosives, FAIMS devices have also been used 
for detecting chemical warfare agents [19] as well as narcotics [20].

Besides defense applications, a number of other studies using 
FAIMS technology have involved Volatile Organic Compound (VOC) 
detection and analysis [8]. Also, it has been demonstrated that it 
is possible to distinguish bacteria via biomarker VOCs produced 
during active proliferation [6]. Studies have also shown that non-
volatile metabolites in endospores can also be targeted for specific 
microorganism detection [10,21]. More recent biologically-related 
studies include health monitoring applications, in attempt to identify 
compounds in human Exhaled Breath Condensate (EBC) which then 
can be used to diagnose asthma or Chronic Obstructive Pulmonary 
Disease (COPD) [22,23]. Further, it was shown that GC/DMS can 
detect low concentrations of specific analytes even in the presence of a 
complex background mixture in human EBC [24]. 

Current GC/DMS research also includes identification of 
compounds from plants. This approach has been applied to analyze 
VOCs resulting from biogenic activity [25] by examining gas-phase 
VOCs in vivo from citrus trees [26]. There is also growing evidence that 
these technologies can be used for in-field detection of host-response to 
infection with specific pathogens of interest. The broad range of fields 
that have benefitted from IMS methods is a result of the technology’s 
robustness. FAIMS in particular is relatively low-cost, and it can operate 
in atmospheric pressure using air or a specialty carrier gas. It also offers 
portability and real time sampling [27], and has the capability to be 
further scaled down for hand-held point detection systems. 

Limitations of Current Technologies
Though IMS and FAIMS technologies have been applied successfully 

for variety of applications, the current methods still have some technical 
challenges that remain. One limitation has been difficulty to achieve 
reproducibility and cross-calibration between different instruments. 
This is primarily a result of imperfect square waveform generation, 
which is challenging to implement precisely in electronic systems. In 
general, RF waveform generators may have slight differences between 
units, and this can lead to small, but potentially significant, changes 
in FAIMS operation. Two different instruments may separate ions 
at slightly different compensation voltages. Each instrument can be 
independently calibrated, and for some applications this issue may 
not be significant (e.g. targeted analysis of specific compounds with 
very unique dispersion plots). However, for most emerging biological 
applications including metabolomics, this may affect each instrument’s 
ability to collect and compare data seamlessly across many independent 
units. The RF waveform generation also draws a reasonably significant 
amount of power [28] and the waveform generator accounts for a large 
part of a typical FAIMS system’s packaged size. Other parameters 
affecting FAIMS devices include the composition of the carrier gas 
mixture, flow rate [29], and ambient humidity. There is also evidence 
that certain device geometries may favor specific applications [16], and 
additional work on that front is likely to take place in upcoming years.

Trends
In the future it is likely that many of these limitations will be resolved. 

Because FAIMS is capable of operating at atmospheric pressure, it 
would be beneficial to develop a handheld and portable sensor that 
is completely portable as a full system. Progress in microfabrication 
and packaging allows further miniaturization of many system-level 
components, which also appears to be a promising way to improve 
overall performance. This may allow for adaptation of a FAIMS-like 
device for other emerging medical applications as well. Additionally, 
miniature systems require less power to achieve high strength fields 
due to closer gap spacing of the electrodes in the drift tube region [30]. 
It would also potentially allow more precise control over local electric 
fields, leading to higher sensitivity and lower limits of detection. With 
continuous progress, it is likely that fully handheld point detectors 
based on FAIMS will be achieved in the near future.
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