
1J Vaccines Vaccin, Vol.15 Iss.S25 No:1000001

Research Article

Correspondence to: Ramy Arnaout, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA, E-mail: rarnaout@
bidmc.harvard.edu

Received: 15-Jan-2024, Manuscript No. JVV-24-24621; Editor assigned: 18-Jan-2024, PreQC No. JVV-24-24621 (PQ); Reviewed: 01-Feb-2024, QC No. 
JVV-24-24621; Revised: 08-Feb-2024, Manuscript No. JVV-24-24621 (R); Published: 15-Feb-2024, DOI: 10.35248/2157-7560.15.S25.001.

Citation: Morgan A, Contreras E, Yasuda M, Dutta S, Hamel D, Shankar T, et al. (2024) The Coviral Portal: Multi-Cohort Viral Loads and Antigen-
Test Virtual Trials for COVID-19. J Vaccines Vaccin. S25:001.

Copyright: © 2024 Morgan A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

OPEN       ACCESS Freely available online

The Coviral Portal: Multi-Cohort Viral Loads and Antigen-Test Virtual 
Trials for COVID-19
Alexandra Morgan1, Elisa Contreras1, Michie Yasuda1, Sanjucta Dutta1, Donald Hamel3, Tarini Shankar1,4, 
Diane Balallo1,5, Stefan Riedel1,2, James E. Kirby1,2, Phyllis J Kanki3, Ramy Arnaout1,2,6*

1Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; 2Department of Pathology, Harvard Medical 
School, Boston, MA 02215, USA; 3Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; 
4Department of Pathology, Northeastern University, Boston, MA 02215, USA; 5Department of Pathology, Boston College, Chestnut Hill, 
MA 02467, USA; 6Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA

ABSTRACT

Objective: Regulatory approval of new over-the-counter tests for infectious agents such as SARS-CoV-2 has 
historically required that clinical trials include diverse groups of specific patient populations, making the approval 
process slow and expensive. Showing that populations do not differ in their viral loads the key factor determining 
test performance could expedite the evaluation of new tests.

Materials and methods: We annotated 46,726 RT-qPCR-positive SARS-CoV-2 viral loads with demographics and 
health status, evaluated the performance of two commercially available antigen tests over a wide range of viral loads, 
and created an open-access web portal allowing comparisons of viral-load distributions across patient groups and 
application of antigen-test performance characteristics.

Results: In several cases distributions were surprisingly similar where a difference was expected (e.g. smokers vs. non-
smokers); in other cases there was a difference opposite from expectations (e.g. higher in patients who identified as 
White vs. Black). Predicted sensitivity and specificity of antigen tests for detecting contagiousness were similar across 
most groups.

Discussion: Rich clinical annotations reveal patient-subgroup-specific similarities and differences that are fertile 
ground for future research. Making viral loads freely and easily available for patient groups required significant 
attention to avoid potential loopholes that might risk patient privacy via identifiability. Two-parameter flexibility 
enables customized prediction of antigen-test results.

Conclusion: In silico analyses of large-scale, real-world clinical data repositories can serve as a timely evidence-based 
proxy for dedicated trials of antigen tests for specific populations. Free availability of richly annotated data facilitates 
large-scale hypothesis generation and testing.
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INTRODUCTION

Diagnosing new pathogens requires developing diagnostic tests, 
which must be evaluated and approved by regulatory agencies 
before use for patient care. Such tests include Over-The-Counter 
(OTC) antigen tests, which have been widely used for at-home 
testing for COVID-19. To be approved, a new test must demonstrate 
a minimum level of clinical performance. Performance is typically 
measured as the test’s sensitivity (the proportion of true-positive 
samples that have a positive result) and its specificity (the proportion 
of true negatives that have a negative result). Clinical performance 

must be demonstrated in a defined patient population or group and 
clinical context, for example inpatients vs. outpatients. However, at 
the start of an outbreak, epidemic, or pandemic, there may not 
be enough information to know whether a test can be expected to 
perform differently by group. Therefore a new diagnostic test may 
be approved based on its performance in the general population, 
not specific groups.

Over time, evidence for clinical differences among specific 
groups may emerge. As this happens, it becomes reasonable to 
ask whether a test might perform differently across groups, with 
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important implications for how and potentially even whether that 
test should be used for certain groups. Ideally, this question would 
be answered by conducting dedicated trials of the new diagnostic 
test in each group. Unfortunately, trials are expensive and slow. 
Also, the number of specific groups that may be of interest is large, 
since subgroups can be defined not only based on demographics 
(such as age, race, and gender), comorbidities (such as diabetes, 
heart disease, or immunosuppression), and care settings (inpatient 
vs. outpatient vs. emergency room) but also by combinations of 
these, an essential component of precision medicine. As a result, 
in practice it is prohibitively difficult to perform trials on specific 
groups for even a single diagnostic test, much less for the many tests 
that are likely to be developed in response to a large-scale outbreak, 
such as have happened during the COVID-19 pandemic. This is a 
problem for regulators, clinicians, and patients alike.

One solution is to apply a new test’s various performance 
characteristics to real-world data collected in the course of patient 
care. Such characteristics include results of existing trials as well as 
analytical (i.e. pre-clinical) operating parameters such as the Limit of 
Detection (LOD). The LOD is defined as the lowest concentration 
of virus that the test can detect in 95% of replicates. It is routinely 
determined by manufacturers and validated by clinical laboratories 
before a test is put to use clinically [1]. The relationship between 
concentration and detection is usually understood to follow an 
S-shaped curve [2]; fitting it requires at least one additional data 
point besides the LOD. The concentration of the virus may be 
measured as the viral load, most often defined as the number of 
copies of viral mRNA per milliliter of testing material (copies/mL).

“Real-world data” means the viral-load result of a reference 
diagnostic test that has already been approved for the general 
population. Because this data is from the general population, it will 
presumably include results on many specific patient groups. One 
can apply the performance of the new test as described above to 
the set or “distribution” of viral loads from a group to predict what 
proportion of patients in the group would have tested positive with 
the new test. This proportion is the sensitivity of the new test for 
that group. In this way, one can estimate clinical sensitivity without 
needing a dedicated trial on that group.

In this study, we apply this approach to COVID-19. We use the 
46,726 positive SARS-CoV-2 RT-qPCR results our institution 
performed and use our electronic health record to annotate each 
result according to the patient’s demographics, comorbidities, and 
so on. Importantly, we convert each PCR result from a Ct value to a 
viral load using robust (100% code-coverage) and accurate publicly 
available software [1,3-5]. Ct values are less useful because they 
vary inversely with viral load and their scale differs by PCR testing 
platform.

We focus on sensitivity/specificity for contagiousness (i.e., 
infectivity). Contagiousness is of special interest given the public 
health focus on curtailing transmission [6,7]. Contagiousness can be 
estimated via a virus culture assay in which a positive patient sample 
is applied to susceptible cells and monitored for virus replication 
[8,9]. The lowest concentration of virus in a patient sample from 
which new virus can be recovered is the contagiousness threshold. 
Because cells in culture have no physical or distance barriers, 
mucociliary elevator, or protection via medications/immunity, 
we consider this threshold a conservative estimate. We previously 
demonstrated this threshold is approximately 50,000 copies/mL 
and has been fairly stable even as the SARS-CoV-2 virus has evolved 

[8,9].

MATERIALS AND METHODS

See Supplementary Methods for complete details. Following 
institutional approval (BIDMC IRBs 2022P000328 and 
2022P000288), specific patient groups were defined from the 
electronic health record based on prior work. Viral loads were 
obtained as described [3]. Select antigen tests and contagiousness 
were evaluated as described [8]. Presumed SARS CoV-2 variant was 
assigned using Covariants.org with confirmation of select strains 
by next-generation sequencing. Computational architecture and 
statistical tests are as described in the Supplementary Methods [10].

RESULTS

A web portal for large-scale real-world SARS-CoV-2 viral 
load results for diverse patient groups

46,726 COVID-19 PCR results (as of April 14, 2023) representing 
approximately 39,180 unique individuals were converted to 
viral loads; annotated for patient demographics, comorbidities, 
presentation, treatment, and socioeconomic status; and made 
available for interactive investigation via a public web portal 
(Table 1). The portal [11,12] allows users to visualize the viral 
load distribution for any patient group, to compare distributions 
between groups, and to estimate, for each group, the sensitivity and 
specificity of a given OTC test for detecting contagious individuals. 
Users can define and compare complex subgroups by selecting 
multiple characteristics via checkboxes in the user interface (Figure 
S1).

Table 1: Summary of patient characteristics shown is counts for select high-
level categories as of April 14, 2023. Counts may differ somewhat from the 
counts presented through the web portal as a result of jittering and as more 
data continues to be added through the portal. Note that counts broken 
down by characteristics do not add up to the total, because of the nulling 
out of some data to reduce re-identification risk (see Methods).

Patient's characteristics COVID-19 PCR results 

Sex  

Female 25,884

Male 20,608

Age  

<30 years old 12,446

30-60 years old 21,889

>60 years old 12,100

Self-reported race or ethnicity  

Unknown/Other 14,530

White 13,806

Black 8,299

Hispanic 7,540

Asian/Pacific Islander 2,472
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Figure 1: Overall bimodal distribution of viral loads: When no checkboxes are selected to constrain or partition the dataset, users see the distribution 
of all viral loads. The marked bimodal distribution is clearly apparent. Note: ( ) The mean viral load across ~46,730 patients was 12 × 105 copies/mL.

Overall viral load distributions

We found that viral loads varied over nearly ten orders of magnitude, 
from seven copies/mL (the lowest our system will report) to 1.5 
billion copies/mL (99th percentile). This extraordinary range is 
consistent with observations from early in the pandemic (spring-
summer of 2020) [1]. Those early observations suggested that viral 
loads were fairly uniformly distributed over the range. In contrast, 
the current dataset, which is ten times as large, demonstrates clear 
bimodality: viral loads were generally either very low, with a peak 
around the LOD of 100 copies/mL, or very high, with a peak~100 
million copies/mL (Figure 1). This bimodality is apparent in 
retrospect e.g., in Figure 2A, of but required a large dataset to 
visualize clearly. Further research is needed to understand the 
reason(s) for these peaks [1].

Viral load comparisons among patient groups-Remdesivir 
treatment and patient presentation: 

The web portal allows statistical comparisons of thousands of specific 
patient groups. We describe several examples that are illustrative of 
the questions that can be asked and answered. Remdesivir (Gilead 
Sciences, Foster City, CA) is an intravenously administered RNA 
polymerase inhibitor initially approved by the FDA for treatment 
of SARS-CoV-2 in hospitalized adults and adolescents [13]. Of the 
46,726 test results in our dataset, 688 were from patients who then 
received remdesivir. In practice, at our institution, remdesivir was 
used for sicker patients. We hypothesized that viral loads would be 
higher on average in patients who received remdesivir and in sicker 
patients (Figure 2). The portal supports this hypothesis: it shows 
viral loads were higher on average in both remdesivir-receiving 
and sicker-appearing patients, with means of 8.6 copies/mL × 105 
copies/mL in patients who received remdesivir vs. 1.2 × 105 in those 
who did not (Figure 2A), and 9.4 × 104 in sick-appearing patients 
vs. 4.1 × 104 in well-appearing patients (Figure 2B). In both cases, 
the difference was due to greater fraction patients in the high-viral-
load peak. In each case, the Kolmogorov-Smirnov [KS] p-value was 
4.3 × 10-16, rejecting the null hypothesis of no difference. These are 
examples in which the portal facilitates confirmation of hypotheses 
regarding differences in viral load.

Setting  

Inpatient 2,157

Outpatient 11,758

Emergency room 1,779

Other institutions 31,031

Variant  

Early 28,289

Delta 2,911

Omicron 11,264

Vaccination status  

Vaccinated 6,806

Unvaccinated 6,960

Unknown 32,732

Outcome  

Died from COVID-19 398

Died with COVID-19 as an 
incidental finding

143

Survived 45,938

Testing platform  

Abbott m2000 24,243

Abbott Alinity 20,593

Abbott Alinity 4-plex 1,889

Total  

 46,726
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Figure 2: Viral load comparisons by Remdesivir treatment, patient presentation, and outcome: (a) Patients who received Remdesivir vs. patients 
who did not receive Remdesivir; (b) patients who presented as ill-appearing vs. patients who presented as well-appearing. Note the bimodal 
distributions, with a low-viral-load peak and a high-viral-load peak; (c) Viral load distributions and pairwise p-values by presence or absence of 
pulmonary disease for patients during the early variant era; (d) Patients who died from COVID-19 had higher viral loads than either patients 
who died with COVID-19 as an incidental finding or survivors; (e) Because there are three or more groups, p-values are displayed as a heat map, 
accompanied by explanatory text. 

We found that the 398 patients who died from COVID-19 had 
higher viral loads than either of the other two groups, and that viral 
loads were statistically indistinguishable between the approximately 
46,000 survivors and the 143 patients who died with COVID-19 
as an incidental finding (p=0.07). For ease of comparison, the 
web portal displays distributions in a ridgeline plot from lowest to 
highest mean, top to bottom. When there are three or more groups, 
p-values are displayed as a heatmap, accompanied by explanatory 
text. (Because KS p-values are symmetric, only the top half of the 
heatmap is shown.)

Complex patient subgroups: race and presumed variant

The ability to interrogate complex subgroups by checking multiple 
boxes in the web-portal interface allows more subtle investigations. 
For example, Black patients have experienced disproportionate 
morbidity and mortality during the pandemic [14]. However, the 
13,806 patients who self-reported as white in our dataset on average 
had slightly higher viral loads than the 8,299 who self-reported as 
Black (KS p=3.3 × 10-13). That the viral loads in the white group 
were on average higher suggests that differences in outcome 
between these groups are not explained by differences in viral load 
(Figures 3A-3B), despite the clear relationship between viral load 
and survivorship described above (Figure 2D). Interestingly, the 
observed difference is more pronounced during the delta-variant 

Unexpected findings-Pulmonary disease

Serious cases of COVID-19 are marked by life-threatening 
respiratory distress. This became less common with the emergence 
of the omicron strain and the increase in immunological exposure 
(via infection or vaccination). We hypothesized that patients with 
pulmonary disease would have higher viral loads than patients 
without it, especially for early viral variants, which had a stronger 
tropism for lung as opposed to the upper respiratory tract. However, 
the portal shows this hypothesis is not supported by the data (Figure 
2C). Viral loads for the 975 patients with pulmonary disease tested 
during the early-variant era were statistically indistinguishable from 
those for the 27,308 patients with no pulmonary disease tested 
during the same time period. This is an example of unexpected 
findings that the portal can reveal.

Comparisons among multiple groups: survivorship and 
causes of death

The portal also allows users to compare>2 groups of patients at a 
time. For example, in quantifying mortality during the pandemic, 
one distinction of value has been between individuals who died 
from COVID-19 as the proximal cause of death vs. individuals 
who died with COVID-19 as an incidental finding. We used the 
portal to compare these two groups with survivors (Figure 2D). 
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these tests. The proportion of positive antigen tests varied with viral 
load. At viral loads less than 103 copies/mL, both antigen tests were 
always negative; at viral loads greater than 107 copies/mL, both 
were always positive. However, there was an overlap of antigen-
test-positive and antigen-test-negative results at intermediate viral 
loads (Figure 4A). k and v0 values (see Methods) were comparable 
between the two tests (k=1.184, v0=4.538 for Binax and k=1.142, 
v0=4.995 for CareStart). The resulting S-shaped curves were used 
to predict antigen test performance in the web portal.

The OTC antigen tests that have been widely available on the 
market since 2021 are considerably less sensitive than RT-qPCR 
for detecting SARS-CoV-2 infection. However, because their LODs 
are generally above the contagiousness threshold, they are quite 
sensitive for detecting contagiousness [9]. 

Based on our clinical experience, we hypothesized that antigen tests 
would perform similarly on different patient groups and subgroups; 
this hypothesis was largely supported (Figures 4B-4D). The web 
portal also allows users to estimate sensitivity and specificity for the 
BinaxNow COVID-19 Ag Card and CareStart COVID-19 Antigen 
Home Test, based on the modelled performance curves, on any 
sufficiently large user-selected patient group (Figure 5). The two 
tests performed well: sensitivities for detecting contagiousness were 
roughly 0.85-0.90 across patient groups. 

wave (Figure 3C). During the delta wave (July to December 2021), 
viral loads were on average three times as high for White patients 
(8.0 copies/mL × 105 copies/mL, n=1,024) as Black patients (2.7 
copies/mL × 105 copies/mL, n=665; KS test p=5.2 × 10-8) with a 
distinctly sharper high-viral-load peak in White patients. This 
difference was greater in patients over 30 years old and was almost 
entirely absent in patients under 30 (30-60 y.o: 398 Black patients 
and 719 White patients, p=2.5 × 10-5;<30 y.o.: 266 Black vs. 299 
White patients, p=0.14). In contrast, viral load distributions for 
Black and White patients were more similar both early in the 
pandemic and during the omicron wave (p=4.0 × 10-5 for 4,393 
Black and 7,042 White patients and p=0.02 for 2,295 Black and 
4,341 White patients, respectively). This example illustrates the 
portal’s utility and (statistical) power for investigating complex 
subgroups and hypotheses.

Antigen test performance

In the head-to-head comparison of PCR and antigen test results, 
281 patients consented to participate. Of the 65 patients with 
positive PCR tests, 43 tested positive on the Binax antigen test and 
40 tested positive on the CareStart antigen test. No invalid antigen 
tests (lacking the control line) were observed. Only one of the 
patients who tested negative by PCR tested positive on the antigen 
tests (both Binax and CareStart), confirming the high specificity of 

Figure 3: Viral load distributions by self-reported race and by race-plus-presumed variant; (a) Viral load distributions by race; (b) Statistical 
comparisons among these distributions; (c) Viral load distributions between black vs. white patients in the delta-variant era.

B

C

A
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Figure 4: Antigen test results from head-to-head trial and performance on patient subgroups: A(I): BinaxNow COVID-19 Ag Card; A(II): CareStart 
COVID-19 Antigen Home Test; (a) Each antigen test result for each PCR-positive patient, vs. log

10
 of viral load according to the simultaneous 

PCR test. Note: ( ) Positive; ( ) Negative; (b) Antigen test performance on patients in neighborhoods stratified by median household income; (c) 
Performance of BinaxNOW COVID-19 Ag card on patients with median household income >$130,000. Note: ( ) Predicted to test positive on 
the antigen test; ( ) Predicted to test negative on the antigen test; (d) Performance of BinaxNOW COVID-19 Ag card on patients with median 
household income<$52,000. The user can use the radio buttons to select any of the patient groups in the viral load distributions in the top section 
of the web portal. The imputed positive antigen-test results will appear as a lighter shade and the negative results a darker shade.
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Figure 5: Determination of the contagiousness threshold for omicron-era SARS-CoV-2 strains: Below a certain viral load in the patient sample 
(x-axis), no virus was recoverable from culture (y-axis, maximum of day 3 and day 6 supernatants). The ( ), culture-negative samples are plotted at 
0.1 copies/mL. Here ( ) shows the confidence interval for the threshold. Here ( ) shows the midpoint of this region (on the log10 scale), 45,000 
copies/mL, as the most likely threshold.

single publication; the portal allows anyone clinicians, investigators, 
developers, regulators, and patients, alone or with the assistance 
of Artificial Intelligence and/or Machine Learning (AI/ML)-based 
tools to explore and conduct research, to test existing hypotheses, 
and to generate new research questions. 

Access to the rich clinical annotations reveals similarities and 
differences in viral loads among patients by demographics, 
presentation, and comorbidity as well as by vaccination status, 
treatment, and socioeconomic status. 

These similarities and differences are most properly understood 
not as cause-and-effect relationships but as practical descriptions, 
explanations for which are likely multi-factorial and fertile ground 
for future research. For example, living in a low-median-salary 
neighborhood should not be understood as causing higher viral 
loads, but people from such neighborhoods are more likely to 
have higher viral loads, however simple or complex the reason(s). 
Similarly, the bimodality of viral loads two peaks; one low, one high 
is also best interpreted through a practical lens as what is observed 
in clinical practice, with the full cause(s) deserving investigation.  

The clinical utility of measuring and investigating viral load in 
SARS-CoV-2 has been amply demonstrated [23-26]. It is consistent 
with both the advantage of viral loads relative to Ct values [27,28] 
and their utility in earlier viral infections such as HIV and Hepatitis 
C (HCV). SARS-CoV-2 viral loads have proven useful in the 
development and characterization of COVID-19 diagnostics in 
multiple contexts, including testing on nasopharyngeal secretions, 
nasal secretions, and saliva [4,5]. Our results demonstrate their 
potential to regulators as a tool to streamline evaluation of new 
OTC tests. Specifically, a test’s performance as a function of viral 

Contagiousness for omicron-era virus: 

For early-pandemic and delta-wave strains of SARS-CoV-2, the 
threshold viral load for contagiousness has previously been found to 
be approximately 105 copies/mL [9]. For omicron variants, we found 
that the threshold is statistically indistinguishable from this, at 4.5 
copies/mL × 104 copies/mL (confidence interval, 1.1 × 104 copies/
mL-1.9 × 105 copies/mL; p=0.23, Figure 4). The omicron threshold 
was based on 20 PCR-positive results from our head-to-head clinical 
trial of 277 total patients. We confirmed that the dominant strain 
circulating in the Massachusetts Bay area was omicron (BA5.2/
Clade 22B) via next-generation sequencing, with only rare single-
nucleotide differences relative to those already described (Figures 
S2a-S2d). Because the strain mix in Massachusetts (Figure S2e), has 
been highly representative of the strain mix in the country as a 
whole throughout the pandemic (Figure S2f), these results support 
the generalizability of these findings from a particular geographic 
area to the entire population.

DISCUSSION

The COVID-19 pandemic has proven a catalyst for accelerating 
medical advances, including the development of more efficient 
methods for developing and testing critical diagnostic assays [15-
18]. It has also drawn attention to the value of reliable large public 
datasets [19-22]. Here we describe such a dataset, to our knowledge 
the first large dataset of SARS-CoV-2 viral loads in patients across 
the history of the pandemic through to the present. The portal 
revealed cases in which differences were expected as well as 
unexpected. The size of the dataset and extent of the annotation 
allow more comparisons than can reasonably be summarized in a 
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load could be used to estimate that test’s clinical sensitivity for 
detecting contagiousness in any patient group, without having to 
conduct a dedicated clinical trial for that group. The alternative 
innumerable dedicated trials are unreasonable to expect, given 
the financial capabilities of developers and the bandwidth of their 
clinical testing partners. For this reason regulatory agencies such 
as the FDA have expressed interest in methods that use large-scale 
real-world data to streamline test evaluation.

Two assumptions implicit in this approach are worth mention. First, 
we model the success rate of antigen tests solely as a function of 
viral load, meaning we assume no other non-negligible factor varies 
systematically between patient groups. Second, we assume that 
the curve success rate as a function of viral load can be adequately 
predicted from a fairly small study. There are two possible sources 
of error in this curve: sampling error, which can be reduced by 
increasing the number of subjects sampled; and lack-of-fit error, the 
error inherent in trying to fit a function of the wrong form. The 
function used in the web portal’s calculations was chosen based on 
its long history in dose-response-type situations and comes with the 
(reasonable) assumptions that the probability increases smoothly 
and continuously with increasing viral load and approaches 0 with 
sufficiently low viral load and 1 with sufficiently high viral load. 
These constraints leave only two free parameters, which is desirable 
for statistical power and robustness to the noise inherent in any 
such study (e.g., sampling error and measurement error). These 
reasons rationalize its use.

A user of the portal who is accustomed to thinking of test quality 
solely in terms of LOD (Limit of Detection) might initially 
be surprised that the portal prefers two parameters to define 
antigen-test performance, not one. In effect, the LOD parameter 
sets the location of the S-shaped curve that relates viral load 
and performance, and the second parameter the 50% detection 
threshold sets the S-shaped curve’s steepness. Without the second 
parameter, one could fit a curve in which the sensitivity is 0% at all 
viral loads below the LoD and 95% at any higher viral load, which 
clearly would be quite different from the relationship observed in 
the head-to-head study. How different the true shape of the antigen 
test performance curve is from the logit function used here, and 
thus whether a different function would fit better, can be tested 
by larger head-to-head studies; however, in the midst of a public 
health emergency, the cost in time of sampling more subjects must 
be weighed against the value of complete certainty. Our fitting 
error was low.

Three limitations deserve mention the first is incompleteness of 
some of the data fields, for example presentation and vaccination 
status (Table 1). Presentation information was only sometimes 
available in structured form in our data repository; we did not 
attempt to extract data from notes to complement incomplete 
records. Vaccination status was likewise only sometimes available in 
a structured manner; integration with public-health records could 
potentially fill in missing records. Second, patient-level annotations 
are not yet available for download as part of the dataset. Making 
viral loads freely and easily available for patient groups required 
significant attention to avoid potential loopholes that might 
risk patient privacy via identifiability. Our methods included 
suppressing data transmission for groups small enough to present 
potential “journalist risk,” jittering counts to prevent deduction of 
the sizes of suppressed groups, and rounding viral loads to two log-
scale decimal places [29,30]. 

Further work is necessary to make patient-level annotations 
available. Third, the size of the dataset, while large, is still insufficient 
to draw statistically strong conclusions for the smallest groups (e.g. 
Native Americans, cystic fibrosis patients, or puerperal mothers). 
One solution is to add data from other institutions that performed 
substantial COVID-19 testing; another is to supplement existing 
large datasets, for example the 50-million-person CVD-COVID-
UK initiative, with viral loads. The free availability of methods to 
convert from Ct values to viral loads facilitates such advances [3].

Clinical care benefits from personalization of diagnostic testing: 
the right test for the right patient, where the importance of patient 
heterogeneity is increasingly accepted. Our portal demonstrates 
that large-scale real-world data can assist this effort by helping 
personalize test sensitivities and specificities without the need for 
dedicated clinical trials. This approach is generalizable beyond 
COVID-19. Laboratory testing is an exceptionally rich source of 
real-world medical information. It is the highest volume medical 
activity, with billions of tests performed annually worldwide. It is 
also the most cost-effective, costing just pennies on the healthcare 
dollar. It is integral to decision-making across medicine, for 
patients at every level of acuity, from screening to emergencies. 
Its results are almost always numerical or categorical, making it 
especially amenable to modern approaches like machine learning. 
And computational re-analysis is substantially less expensive than 
de novo trials. The present work supports the view that meaningful 
value can come economically from repurposing of the vast stores of 
real-world laboratory results for public use.

Data availability

Data for the plots in (Figures 1-4) our papers (except figure 4a) are 
reproducible. Deidentified data for figures 4a and figure 5 available 
upon request. Aggregate group-level data is publicly available via 
API from our web server. Deidentified patient-level data will be 
made available by arrangement, subject to IRB approval. Please 
contact the corresponding author to apply.

CONCLUSION

In conclusion, harnessing in silico analyses on vast clinical data 
repositories provides a practical and evidence-backed substitute for 
dedicated trials of antigen tests targeted to specific populations. 
The open accessibility of meticulously annotated data not only 
supports extensive hypothesis formulation but also expedites large-
scale testing initiatives, offering a valuable resource for advancing 
diagnostic methodologies in a timely and efficient manner.

The COVID-19 pandemic has not only prompted significant 
medical advancements but has also underscored the importance 
of extensive public datasets. The presented dataset, spanning the 
entire pandemic, offers a comprehensive exploration of SARS-
CoV-2 viral loads, revealing nuanced patterns influenced by 
demographics, vaccination status, and socioeconomic factors. 
While cautioning against oversimplification of observed 
correlations, the study highlights the clinical utility of viral load 
measurements in refining COVID-19 diagnostics and regulatory 
evaluations. The portal’s unique approach, leveraging large-scale 
real-world data, demonstrates the potential for personalized 
diagnostic testing, extending beyond COVID-19. The study 
advocates for the economical repurposing of abundant laboratory 
data to enhance public health.
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