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Abstract
The dense extracellular matrix consists of a multitude of proteins with important implications in tumorogenesis that 

extend beyond the maintenance of tissue integrity. Several of the main macromolecular constituents- proteoglycans, 
collagens, integrins, and syndecans will be discussed in this review, with particular attention to their roles in tumor 
initiation, invasion, angiogenesis, and metastasis. In addition, a brief synopsis of the role of enzymes that remodel 
the extracellular matrix will be provided. Finally, specific examples of targeted molecular therapies: anti-integrin 
agents, MMP inhibitors, and hyaluronidase will be discussed. 
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Abbreviations: ECM- Extracellular Matrix; BM- Basement
Membrane; PG- Proteoglycan; HSPG- Heparan Sulfate Proteoglycan; 
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Introduction
The biology of cancer is intricate and multifaceted. Much is 

known about genetic and epigenetic changes that transform normal 
cells into an aggressive malignant phenotype. However, cancer cells 
exist in a complex microenvironment, dependant on feedback and 
paracrine signaling from other tumor cells and from stromal cells such 
as fibroblasts, immune cells, and pericytes. In addition, the dynamic, 
reciprocal network of proteoglycans, polysaccharides, glycoproteins, 
growth factors, and other soluble molecules that constitute the 
Extracellular Matrix (ECM) also has a profound influence on 
carcinogenesis and metastasis. These main constituents of the ECM 
as well as their roles in tumorogenesis, invasion, angiogenesis, and 
metastasis will be discussed in this review. Specific ECM targeted 
molecular anti-cancer therapies currently under investigation will be 
highlighted. 

Extracellular Matrix
Extracellular matrix (ECM) is the dense, often rigid, non-cellular 

environment that is in direct physical contact with cancer cells 
during all stages of tumorogenesis and metastasis. The components 
of ECM include: proteoglycans, glycoproteins, polysaccharides, 
water, and soluble factors [1,2]. According to Hynes and Naba, the 
“core matrisome” of proteins in the ECM is vast, numbering around 
300 [3]. This milieu of macromolecules constantly undergoes post-
translational modification, degradation, and remodeling by enzymes 
such as Matrix Metalloproteinases (MMPs). Typically, the term ECM 
is used to describe the interstitial matrix, or the space between cells. A 
more specialized version of ECM is located basolaterally to epithelial 
and endothelial cells, and is termed the Basement Membrane (BM) [4]. 
Besides forming the architectural scaffolding and imparting structural 
integrity to tissues, the ECM plays an important role in biochemical 

and mechanical signaling in the Tumor Microenvironment (TME). 
These cues modulate many aspects of carcinogenesis, from tumor 
formation to tumor migration and invasion to distant metastasis [1,2]. 
Communication between the ECM and cancer cells occurs directly 
through cell-ECM adhesion molecules such as integrins and syndecans 
and also indirectly through ECM bound growth factors and transmitted 
mechanical forces. The main macromolecules constituting the ECM as 
well as the adhesion molecules connecting cancer cells to the ECM will 
be described in the following sections. 

Macromolecules of the ECM
Proteoglycans

Proteoglycans (PGs) are composed of a core protein covalently 
attached via serine residues to long unbranched polysaccharides 
made up of repeating disaccharide units- glycosaminoglycan chains 
(GAGs). These GAGs are highly sulfated imparting a net negative 
charge that attracts water as well as cations and creates a hydrated 
gel-like environment that permits resistance to compressive forces 
and sequesters soluble growth factors. There are five known GAGs: 
heparan sulfate, chondroitin sulfate, dermatan sulfate, keratin sulfate, 
and hyaluronan. All exist bound to a protein core except hyaluronan, 
also known as hyaluronic acid (HA), which is released into the ECM 
independent of the Golgi apparatus and exists bound to the matrix 
and to the cell surface via CD44 receptors. PGs can be divided into 
four main families: glypicans (six heparan sulfate PGs covalently 
anchored to the cell surface via GPI-glycosylphosphatidylinositol), 
syndecans (four primarily heparan sulfate or chondroitin/dermatan 
sulfate transmembrane PGs), lecticans (four chondroitin or keratin 
sulfate soluble PGs located extracellularly), and SLRPs- small leucine-
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rich repeat proteoglycans (six chondroitin/dermatan sulfate or keratin 
sulfate PGs also located extracellularly). There are many PGs that are 
not members of a specific family, for example, CD44, thrombomodulin, 
perlecan, endocan, and type IX collagen among others [5,6].

In tumorogenesis, much attention has been paid to the 
ubiquitous heparan sulfate proteoglycans (HSPGs) [7]. The repeating 
disaccharide units in HSPGs are composed of glucuronic acid and 
N-acetylglucosamine. Complexity is conferred to these molecules by 
epimerization, sulfation, and de-acetylation [6]. The main types of 
interstitial matrix HSPGs are glypicans and syndecans, while examples 
of BM HSPGs are collagen type XVIII, perlecan, and agrin [1,5].  In 
addition to contributing to tissue integrity via their interactions with 
collagens and other glycoproteins such as fibronectin and laminin 
in the ECM, HSPGs also mediate cellular uptake of growth factors 
and other soluble ligands and function as co-receptors for multiple 
ligands. They mediate important cell signaling pathways involved in 
cellular growth, proliferation, and migration [7].  Multiple studies 
also implicate HSPGs as extracellular reservoirs for growth factors, 
chemokines, morphogens, and cytokines. In this bound form, these 
soluble factors are inactive and unable to influence their target cells. 
However, cleavage of HS by heparanase (an endoglucuronidase) 
results in the release of HS bound factors such as Vascular Endothelial 
Growth Factor (VEGF), Hepatocyte Growth Factor (HGF), Fibroblast 
Growth Factor 2 (FGF2), Transforming Growth Factor β (TGFβ), and 
Platelet-Derived Growth Factor (PDGF), which can potentiate tumor 
cell growth and invasion as well as angiogenesis and metastasis [6,8]. 
Studies have shown that in melanoma, for example, the release of HS by 
heparanase promotes melanoma tumorogenesis and local angiogenesis 
[8]. Elevated heparanase levels have been detected in many other 
cancers, and have been correlated with invasion and metastasis [9]. 
However, non-enzymatic functions of heparanases in carcinogenesis 
have been described [6].

Another class of enzymes that act on HSPGs, sulfatases (Sulfs), 
is also frequently dysregulated in cancer. These enzymes modify the 
sulfation status of HSPGs by selectively removing a sulfate group from 
the 6-O position, resulting in altered binding of ligands. While classic 
theory holds that Sulf-1 is a tumor suppressor and Sulf-2 is pro-tumor, 
Sulf-1 and Sulf-2 levels have been shown to be both up-regulated and 
down-regulated in human cancers [10,11]. Thus, the role of HSPGs in 
carcinogenesis is highly complex.

Collagens

Collagens are a group of 28 fibrous proteins that exist as supra-
molecular complexes of triple-stranded α-helices. Post-translationally, 
hydroxylation occurs at proline and lysine residues, while glycosylation 
occurs at hydroxylysine residues [12]. These fibrils and networks are 
further organized into sheets and cables by fibroblasts and provides 
tensile strength to the ECM and BM [1]. The main collagen components 
of the interstitial matrix are types I and III, whereas collagen type IV is 
abundant in the BM [4]. Collagens regulate cell adhesion to the ECM 
by binding to cell surface adhesion molecules including integrins, 
syndecans, and other PGs. The ECM of cancer is characterized by a 
dense, rigid, parallel orientation of collagen fibers that promotes 
epithelial tumor cell migration [12]. Stiffness of the microenvironment 
is created in part by covalent crosslinking of collagen fibers, facilitated 
by lysyl oxidase enzymes (LOX and LOXL1-4). These copper dependent 
enzymes are upregulated in many cancers, especially under hypoxic 
conditions, and their overexpression results in a rigid ECM that is 
tumorogenic and supportive of invasion and metastasis. The LOX 

dependent collagen crosslinking up-regulates the formation of integrin 
focal adhesion complexes stimulating downstream signaling, further 
demonstrating the complex dynamic interactions that occur during 
tumor development and progression [13]. Studies have shown that up-
regulation of LOX occurs in more invasive and aggressive cancers, and 
correlates with poor prognosis [12,14,15].

Desmoplasia, or fibrotic reaction, driven primarily by stromal 
fibroblasts, either resident or recruited, represents an important step in 
tumorogenesis. ECM proteins, including collagens, are laid down in an 
extensive, dense network and facilitate directional migration of tumor 
cells through this collagen “highway” [12,13]. Using a pancreatic cancer 
model, one study reported that stromal fibroblasts expressing the 
protease- Fibroblast Activation Protein (FAP) promote the formation 
of an organized and parallel network of collagen that enhances velocity 
and directionality of invading tumor cells in a β1-integrin/FAK 
dependent fashion [16]. In addition, the mechanical force of this stiff 
matrix is sensed and transmitted via integrin receptors, resulting in 
increased epithelial tumor cell proliferation [12,13].

Collagen fibril formation is also greatly influenced by the 
glycoprotein fibronectin, which can bind directly to collagen fibers 
[12,17]. In many cancers, fibronectin dimer production by stromal 
fibroblasts is upregulated. These globular dimers associate with α5β1 
integrins on the cell surface and the protein is stretched and elongated 
into a more linear form, revealing cryptic binding sites on fibronectin 
that when exposed may further contribute to fibril strength and rigidity 
[18]. Thus, the relationship between collagen fibril formation and 
fibronectin fibrillogenesis is reciprocal in nature and involves integrin 
receptors [17].

ECM-Cell Adhesion Molecules
Integrins

Integrins are a class of 24 distinct heterodimeric cell-surface 
glycoproteins composed of α and β subunits. Multiple classifications 
exist for integrins, but generally revolve around binding specificities. 
They are characterized by the presence of multiple binding and 
activation sites and are known to interact with a multitude of cell 
adhesion molecules, other proteins of the ECM, and growth factors [19-
21]. This complex integrin network, or “integrin adhesome” consists of 
156 linked proteins and lipids characterized by 690 interactions (379 
binding, 213 activation, and 98 inhibitory) [22].

Integrins do not possess intrinsic enzymatic activity, but they 
facilitate cell adhesion to the ECM and mediate “inside-out” signal 
transduction between the ECM and cancer cells through non-
enzymatic mechanisms. When bound to other proteins or growth 
factors in the ECM, integrins undergo receptor clustering and 
conformational changes that expose effector-binding sites. The result 
is the activation of cytoplasmic kinases, such as the phosphorylation 
of Focal Adhesion Kinase (FAK), which results in the transmission of 
signals to the cell’s nucleus. These transmitted signals modulate cell 
migration, proliferation, and metastasis [19-21].  In addition, integrin 
signaling pathways  regulate polymerization and de-polymerization 
of the actin cytoskeleton at the leading edge of cells, necessary for cell 
spreading on the ECM [20].

A major class of integrins up-regulated in the ECM of many tumors 
is arginine-glycine-aspartate (RGD) binding integrins. Examples of 
this family implicated in cancer and angiogenesis include: αvβ3, αvβ1, 
αvβ5, and α5β1. Tumor cells deposit glycoproteins containing the 
RGD sequence (ex. fibronectin and vitronectin) into the ECM during 
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the initiation of tumorogenesis. These protein-protein interactions 
promote tumor formation and migration [23,24].

Syndecans

Syndecans are a class of transmembrane HSPGs that are crucial 
for cell-ECM adhesion and paradoxically, also cell migration. Four 
syndecans (syndecan-1, -2, -3, and -4) have been characterized, but 
syndecan-1 is currently the most described in cancer literature [25]. It 
has been shown that basolaterally expressed syndecan-1 functions to 
anchor epithelial cells by connecting the ECM to the actin cytoskeleton 
via its associations with collagens, fibronectin, and thrombospondin. 
Investigators have also demonstrated that syndecan-1 associates with 
integrins and stabilizes focal adhesion complexes. The expression of 
cell surface syndecan-1 on epithelial cells promotes cell adhesion and 
prevents cell locomotion and migration [26]. Somewhat paradoxically, 
the expression of syndecan-1 on stromal fibroblasts actually promotes 
tumor cell migration. In models of breast cancer, it has been shown that 
syndecan-1 positive stromal fibroblasts orchestrate the formation of an 
organized ECM with collagen fibers in a parallel orientation, which 
promotes directional migration and invasion of cancer cells [25].

Syndecan-1 is also implicated in cancer progression via another 
mechanism. The syndecan proteins have an extracellular domain 
(ectodomain) that can be cleaved or shed by sheddases, which are 
membrane-bound enzymes of the MMP or A Disintegrin And 
Metalloproteinase (ADAM) families [26,27]. For example, one study 
reported that in vitro, membrane type matrix metalloproteinase-1 
(MT1-MMP also termed MMP-14), cleaves a Gly245-Leu246 peptide 
bond that results in the shedding of syndecan-1 and the stimulation 
of cell migration [28]. When this ectodomain is shed, this soluble 
protein promotes migration and angiogenesis. In fact, high levels 
of shed syndecan-1 in patients’ serum of many cancers have been 
correlated with a poor prognosis. For example, in multiple myeloma, 
heparanase expression in the bone marrow, which results in the 
shedding of syndecan-1, is a bad prognostic factor [29]. Another 
study suggested that levels of shed syndecan-1 in the serum might 
even be an independent prognostic marker in multiple myeloma 
[30]. One proposed mechanism of how shed syndecan-1 participates 
in carcinogenesis is through its binding to angiogenic growth 
factors, VEGF and FGF-2. Receptors such as VEGFR and integrins 
on endothelial cells can recognize these growth factor-syndecan-1 
complexes and initiate a process of endothelial budding and invasion 
eventually leading to neovasculature formation [26].

ECM Remodeling and Degradation
MMPs/TIMPs

The ECM of tumors is continually undergoing degradation and 
remodeling by proteases. The primary proteases involved are members 
of the MMP family, zinc dependent endopeptidases. Currently over 20 
members have been identified and are divided into four main groups: 
collagenases, gelatinases, membrane type, and stromelysins. Other 
MMPs such as matrilysin (MMP-7) do not readily fit into any of the 
above groups. Both tumor and stromal cells secrete mMPs as inactive 
zymogens in the form of pro-MMPs and are activated in the ECM 
by other proteases or by already active MMPs. The mechanisms and 
functions of MMPs in tumorogenesis, angiogenesis, and metastasis are 
diverse [31-33].

Normal tissue homeostasis is maintained by tight control of MMP 
activity, however in tumorogenesis, cancer cells exploit the function 
of these enzymes to promote an invasive and metastatic phenotype 

[31-33]. In addition, when normal epithelial cells lose their connection 
to the ECM they undergo anoikis (programmed cell death), which is 
triggered by detachment. Cancer cells, on the other hand, have evolved 
mechanisms to avoid anoikis, allowing them to survive even after 
MMPs disrupt their attachments to the ECM and to each other [34].

Two tumorogenic MMPs that have been extensively studied in 
cancer are the gelatinases: MMP-2 and MMP-9. These MMPs and 
others cleave ECM protein-growth factor complexes and release bound 
factors, such as VEGF, TGFβ, and IGFs, which can then bind to growth 
factor receptors and promote tumor proliferation and angiogenesis 
[35,36]. MMP-9 has also been shown to interact with the αvβ3 integrin 
receptor in breast cancer [31]. In addition, MMPs are involved in the 
disruption of epithelial and endothelial cell basement membranes, 
which promote cell migration and angiogenesis [31-33]. For example, 
cleavage of type IV collagen and laminin in the BM uncovers cryptic 
binding sites for growth factors and other proteins that promote tumor 
cell growth, migration, and angiogenesis. [37] On the other hand, 
cleaved products from type IV collagen are also known to be anti-
angiogenic [38].

Another important step of tumorogenesis promoted by MMPs as 
well as ADAMs is the degradation of cell-cell adhesion molecules such 
as cadherins, a family of calcium binding transmembrane glycoproteins 
that form adherens junctions between epithelial cells. The down-
regulation of E-cadherin, a process regulated by many factors in addition 
to MMPs and ADAMs, results in the translocation of β-catenins to the 
nucleus and the polymerization of the actin cytoskeleton into stress 
fibers. A more motile mesenchymal-like cell now characterizes the 
invasive and metastatic phenotype  [31]. This phenomenon termed 
the epithelial-mesenchymal transition (EMT) is mediated largely by 
TGFβ. Other proteins such as N-cadherin, vimentin, tenascin-C, and 
fibronectin are up-regulated in the mesenchymal phenotype. Further 
details of EMT are beyond the scope of the discussion in this review 
[39-41].

The proteolytic degradation and remodeling of MMPs is inhibited 
by the activity of four tissue inhibitors of metalloproteinases (TIMP1-
4). The N-terminus of TIMPs binds to the catalytic domain of MMPs 
and inhibits their activity. In tumorogenesis, the balance of MMPs 
and TIMPs is altered, and decreased expression or down-regulation of 
TIMPs promotes tumor metastasis as well as angiogenesis [31].

As mentioned above, one class of MMPs is the membrane type 
MMPs that are expressed on the cell surface. MMP-14 or MT1-MMP is 
a well-studied member of this class. This isoform functions to degrade 
collagen types I, II, and III as well as fibronectin, laminins, vitronectin, 
and aggrecan. It has been shown to be present on the motile edge of 
tumors and serves to cleave the hyaluronan receptor CD44, promoting 
cell migration [42]. In fact, elevated levels of soluble CD44 have 
been detected in the plasma of patients with metastatic cancer [43]. 
In addition, MT1-MMP, in conjunction with TIMP-2 recruits and 
activates pro-MMP-2. This paradoxical pro-tumor effect of TIMP-2 is 
attributed to its C-terminal domain [31,33,44,45].

ECM-Targeted Molecular Anti-Cancer Agents
Anti-Integrin Drugs

Goodman and Picard, in their review on anti-integrin agents, 
highlighted the properties of integrins, specifically their cell-surface 
location and their sensitivity to blockade that make them attractive 
therapeutic targets. Approximately 15 anti-integrin agents were 
currently in active clinical trials as of 2012 [23]. Cilengitide, the only 
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anti-integrin drug in a Phase III trial- CENTRIC (clinicaltrials.gov, 
NCT00689221), is a small molecule drug with an RGD sequence that 
inhibits both αvβ3 and vβ5 integrin receptors. This drug has shown 
favorable safety profiles in earlier trials, however, in February of 2013, 
Merck reported that the study failed to meet its primary endpoint of 
a survival advantage in the group receiving cilengitide in conjunction 
with standard chemoradiotherapy compared to the group receiving 
only standard chemoradiotherapy in patients with glioblastoma 
multiforme [46]. The full results of the study are not yet available, but 
will reportedly be available in June 2013. Currently, other Phase I and 
II trials using cilengitide as a therapeutic for multiple other cancers are 
in various stages of development [47-50]. (See also: NCT01276496, 
NCT01118676, NCT00705016, NCT00077155)

Other integrin inhibitors demonstrating potentially promising 
results in Phase I and II clinical trials include: 1. Etaracizumab 
(MedImmune), a monoclonal antibody to αvβ3 integrin; 2. Volociximab 
(PDL BioPharma/ Biogen Idec), a monoclonal antibody to α5β1; 3. 
ATN-161 (Tactic Pharma), an oligopeptide that inhibits αvβ3, α5β1, 
and αvβ5 in an RGD-independent manner; 4. Intetumumab (Janssen 
Biotech), a monoclonal antibody to αv integrin; and 5. DI17E6 (Merck 
KGaA/EMD Serono), also a monoclonal antibody to αv integrin.

Etaracizumab (MEDI-522) is currently under investigation in 
melanoma (NCT00066196) and advanced prostate (NCT00072930) 
and colorectal cancer (NCT00027729). A randomized phase II open-
label trial comparing the combination of etaracizumab and dacarbazine 
versus dacarbazine alone in patients with metastatic melanoma, 
however, showed no benefit in time to progression or progression 
free survival with the addition of etaracizumab [51]. Volociximab is in 
various stages of safety and efficacy trials in melanoma (NCT00099970), 
non-small cell lung (NCT00654758), renal (NCT00100685), ovarian 
(NCT00516841), and pancreatic cancer (NCT00401570). However, 
a phase II study showed progression of disease in 13 of 14 patients 
receiving monotherapy volociximab for platinum-resistant ovarian or 
peritoneal cancer [52].

Preliminary data from a phase I trial of ATN-161 in 26 patients 
with solid tumors showed the drug was well tolerated [53], and a 
current trial is underway in malignant gliomas (NCT00352313). 
Also, according to Tactic Pharma, phase II trials in head and neck 
cancer as well as glioblastoma multiforme are in the planning stages. 
A randomized phase II trial (NCT00246012) in metastatic melanoma 
patients of intetumumab administered alone or in combination 
with dacarbazine showed no significant difference in progression 
free survival [54]. Another study, also phase II (NCT00537381), 
however, showed inferior progression free survival in patients who 
received intetumumab in combination with docetaxel and prednisone 
compared to docetaxel and prednisone alone in patients with metastatic 
castration-resistant prostate cancer [55]. Finally, as of April 2012, a 
phase II study (PERSEUS, NCT01360840) of DI17E6 (also referred to 
as EMD 525797) had enrolled 106 patients with metastatic castrate-
resistant prostate cancer. Results of that study are not yet available [56].

Anti-integrin therapy is still in its infancy, and there are still 
many unanswered questions regarding the therapeutic potential for 
drugs like Cilengitide. The reasons for failure of many of the above-
mentioned studies are likely not a simple answer. There is concern 
about target specificity, as normal cells express integrin receptors as 
well. In addition, preclinical animal data has raised concerns that anti-
integrin agents might actually increase tumor growth and angiogenesis 
[57]. Hersey at al, also point out that determining the optimal dose 
of anti-integrins is crucial, and hypothesize that higher doses of 

etaracizumab (>10 mg/kg) might have produced a survival difference 
in their study [51]. Finally, the majority of these trials have been 
conducted in advanced stage cancers. Perhaps anti-integrin therapy 
might prove more beneficial if given early on in carcinogenesis. Future 
studies using these targeted molecular therapies will hopefully answer 
these questions.

MMP Inhibitors

Unfortunately, despite the fact that MMPs are up-regulated in 
almost all human tumors and play a vital role in tumor progression 
via matrix remodeling and digestion of cell adhesion molecules, 
the results from clinical trials looking at MMP inhibitors have been 
largely disappointing. Early studies showed that with prolonged 
usage, MMP inhibitors resulted in significant musculoskeletal pain 
and inflammation. This toxicity was reduced by the development of 
drugs with diminished activity against sheddases. However, Phase 
III clinical trials have failed to show therapeutic benefit or improved 
survival [32,58-60]. A phase III trial (NCT00004199) comparing 
prinomastat in combination with gemcitabine-cisplatin in patients 
with non-small cell lung cancer was closed early due to lack of efficacy 
[58]. A randomized phase III trial of tanomastat was conducted after 
administration of chemotherapy to patients with ovarian cancer, but 
failed to demonstrate any prolongation in progression free survival 
[59]. Marimastat, administered after chemotherapy in a phase III trial 
(NCT00003010) to patients with stable metastatic breast cancer, also 
failed to prolong progression free survival [60].

These results were especially discouraging as preliminary animal 
research using MMP inhibitors showed promising results. Coussens 
et al. points out, however, that when MMP inhibitors were used in 
animal models of cancer they were generally given early on in tumor 
formation, whereas in human studies the majority of patients had 
advanced stage or even metastatic disease [32]. Thus, MMP inhibitors 
may actually be useful in treating human cancer if given earlier on in 
disease progression, but this remains to be proven.

Enhancing drug delivery through the ECM

The desmoplastic reaction that results in a dense and stiff ECM not 
only promotes tumor progression by creating cell-ECM interactions but 
also provides chemoresistance to the developing tumor. Intratumoral 
vasculature is leaky and the lack of functional lymphatics contributes to 
this chemoresistance by raising the interstitial fluid pressure [12]. The 
presence of elevated amounts of HA in most cancers, a polysaccharide 
that attracts water, expands the matrix volume, and increases viscosity, 
further increases interstitial fluid pressure, creating issues with 
hematogenous chemotherapeutic drug delivery. It is also thought that 
the anionic nature of HA prevents adequate tumor penetration by 
chemotherapeutic agents [61]. Finally, it is likely that collagen fibers 
bind to and sequester drugs, further preventing their action in the 
tumor microenvironment [12].

Several studies carried out in animals have shown that there is a 
reduction in tumor volume with inhibition or depletion of stromal 
components, such as fibroblasts, that are primarily responsible for the 
fibrotic reaction in the ECM [62,63]. Others have demonstrated that 
inhibition of signaling pathways that potentiate stromal desmoplasia 
transiently increases the delivery of chemotherapeutic agents [64]. A 
temporary reduction in interstitial fluid pressure and an associated 
increase in delivery of antibodies were seen with collagenase and 
hyaluronidase in an osteosarcoma xenograft model [65-67].

Despite many promising animal models, enzymatic modification 
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of the ECM to improve drug delivery has been plagued with issues in 
human studies. For example, early studies using bovine hyaluronidase 
resulted in a high number of allergic and anaphylactic reactions. In 
addition, use of collagenases has been limited by its lack of specificity 
[61]. Currently, though, recombinant human hyaluronidase, Hyelenx, 
is FDA approved for subcutaneous hydration and to enhance delivery 
of injectable drugs. In cancer research, Halozyme Therapeutics 
has developed a subcutaneous form that is under investigation, as 
Chemophase in superficial bladder cancer in early phase studies 
(NCT00782587, NCT00318643) in conjunction with Mitomycin 
C and as PEGPH20 in combination with gemcitabine for stage IV 
pancreatic cancer (NCT01453153). It has been shown that the addition 
of PEGPH20 to gemcitabine depletes HA, normalizes interstitial fluid 
pressure, increases tumor vasculature, decreases tumor size, decreases 
metastatic burden, and prolongs survival in a murine spontaneous 
pancreatic cancer model [68]. The hope is that the addition of 
PEGPH20 to chemotherapeutics will have the same positive results in 
human trials. 

Additionally, Hoffman LaRoche has been granted a license by 
Halozyme to combine the recombinant human hyaluronidase with 
trastuzumab in the form of a subcutaneous injectable Herceptin. 
A recently resulted phase III trial (NCT00950300), the HannaH 
study, demonstrated non-inferiority of the subcutaneous Herceptin 
compared to the traditional IV Herceptin in female patients with early 
stage HER2 positive breast cancer [69-70]. Two more trials, PrefHer 
(NCT01401166) and SafeHer (NCT01566721) are actively recruiting 
participants to analyze patient preference as well as drug delivery 
devices for subcutaneous Herceptin.

Conclusion
The ECM, or the dense non-cellular component of tumors, 

is an important contributor to tumorogenesis and metastasis. 
Macromolecules such as proteoglycans, collagens, integrins, and 
syndecans, originally thought to function primarily in structural support 
have been found to participate in numerous diverse ECM-cell signaling 
pathways that promote tumor migration, invasion, and metastasis as 
well as the formation of neovasculature. The accompanying table 
(Table 1) provides specific examples of these ECM constituents and 
their reported roles in cancer. This table is by no means an exhaustive 
list of ECM members or function; interested readers should see cited 
reviews and other excellent reviews not cited due to space limitations. 

Future studies should focus on improving current methods as well as 
developing new approaches to target these molecular components of 
the tumor microenvironment. 
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