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Opinion
Over a hundred years ago, Poul Ehrlich (1854-1915) proposed a lock 

and key model for the interaction between drug and target in which a 
ligand fits into a 3-dimension pocket [1]. For many years, this was a 
source of inspiration and dovetailed well with the reductionist approach 
of science. This led to the development of in vitro high-throughput 
screening and the construction of massive combinatorial chemistry 
libraries. The initial lock and key concept has been modified several 
times to include ligand and target flexibility (leading to the hand in glove 
analogy). Theoretically, a highly specific treatment should be better 
tolerated due to an absence of off-target side effects. Unfortunately, 
practice has shown that there is a poor correlation between in vitro 
drug effects and in vivo efficacy with target-driven approximations [2,3]. 
Our increasing understanding of the multiple interacting feedback 
mechanisms operating within the cell has led to the realization that 
polypharmacology (the interaction of a single drug on multiple targets 
or the use of multiple drugs on multiple targets) will be necessary to 
treat the majority of non-monogenic disorders [4-7].

But there is another level of complexity that is equally important 
and also needs to be considered. Generally speaking, in the development 
of drugs, the demands are for as high a degree of “medical resolving 
problems” and as few negative side effects as possible.

For the sake of this discussion, let drugs be divided into two groups: 
Parasitotropic and organotropic. In this article, we will use the Oxford 
Dictionary definition of parasite “An organism that lives on, in, or with 
an organism of another species, obtaining food, shelter, or other benefit”. 
We naturally attach a negative stigma to the word ‘parasite’ but in the 
case of the gut microbiota we owe them an apology. An alternative 
word would be a “mutualist”-an organism which gives a quid pro quo 
or specific beneficial service to the host which affords it sustenance and 
domicile (definition adapted from American Naturalist vol. 28, p: 713, 
1894).

Parasitotropic-directed drugs, such as antibiotics and 
chemotherapeutic agents, are developed with aim of exploiting their 
antimicrobial characteristics, while making every effort to limit their 
negative side effects on the patient host (human and/or animal). Here, 
possible positive side effects on the host are neglected.

Organotropic-drugs, on the other hand, are in general developed 
without any considerations for their possible effects on microorganisms. 
The focus is on obtaining a beneficial effect on the patient.

The importance of microorganisms for human health is only just 
beginning to be realised: about half of the cells and only 1% of the 
genes found in our bodies are human [8]. The gut microbiota has been 
called the ‘hidden organ’ because it has been overlooked for so long. It 
is essential for the maintenance of health, behaviour and learning. The 
microbiota is also involved in metabolising exogenous compounds (e.g. 
food and medicines), thus significantly affecting drug pharmacokinetics 
(bioavailability, efficacy and adverse effects) [9]. It is becoming 
increasingly recognised for its influences on several diseases including 
obesity, and diabetes [10] and microbial dysbiosis is being linked to 
autism, depression, Alzheimer’s and Parkinson’s diseases [8,11].

Considering the various roles of microrganisms in our gut, the 
current approach to drug discovery is thus incomplete. Clinical studies 
are the first opportunity to ‘observe’ this, and the high rejection rate of 
candidate drugs may be one of the consequences of this oversight.

Evidence that compounds having both parasitotropic directed and 
organotropic directed activities have existed in the literature for many 
years but have been ignored. One of the earliest examples, was methylene 
blue (a phenothiazine) which has both antimalarial, painkilling and 
neuroleptic activity [12-15].

In our investigations and in the historical studies we have now been 
able to confirm that neurotropics (especially psychotherapeutic drugs 
in general) and their analogues have antimicrobial effects in vitro and 
in vivo [16-20].

These drugs and other compounds having both organotropic 
directed and parasitotropic directed activities are called ‘non-antibiotics’ 
[21]. Clinically, the parasitotropic effect of the organotropic drugs 
is generally ignored, and, for all intents and purposes, the possibility 
for both negative and positive side effects have been neglected. This 
biologically ‘symmetric’ model was proposed many years ago in 1979 
(Figure 1) [22,23].
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When an organism becomes infected with a pathogenic 
microorganism (whether bacterial, viral, protozoan or other) it will 
respond immunologically. This response is augmented with various 
types of antibiotics or chemotherapeutic drugs. These drugs will also be 
selected to exclude the unwanted organotropic side effects (symbolised 
by the thin arrow). These selection procedures therefore ‘overlook’ the 
effect of organotropic directed drugs on microorganisms. These have 
been called non-antibiotic effects. There may be interactions (direct or 
indirect) between antibiotics and non-antibiotics.

Consequences of the Two-sided Effect of Psychotherapeutic 
Drugs and Other Non-Antibiotics

The observation, which was initially made relating 
psychotherapeutics (and their stereo-isomeric analogues) with an 
antimicrobial effect, opens up a new paradigm in clinical microbiology 

and in clinical pharmacology. Exploring this paradigm raises a number 
of questions which can only partially be answered currently:

1) What is the significance of the two-sided effect, and the theoretical 
and clinical consequences of the organotropic drugs having an impact 
simultaneously on the organs (the host) and the microorganisms (the 
good and the bad bugs on/in the patient)? In other words, what is the 
significance, generally speaking of these non-antibiotics on the host and 
the microorganisms and their interaction e.g. in the infected patient? 
Such an activity of the non-antibiotic might be negative side effect 
(killing the good bugs) or positive side effects (killing the bad bugs). 
A few examples are known. Microorganisms have been known to be a 
target for phenothiazine’s for many years [24].

Patients having ulcus ventriculi were treated-with trimipramine (a 
phenothiazine). This was used in Norway even before it was known that 
ulcus ventriculi was caused by a Helicobacter pylori infection [25,26].

Figure 1: Interactions between drugs and organisms. Organ dysfunction is normally treated with organotropic drugs in order to restore homeostasis of the 
organism. These drugs will be carefully screened to eliminate as many unwanted side effects on the organism as possible. When an organism becomes infected 
with a pathogenic microorganism (whether bacterial, viral, protozoans or other) it will respond immunologically. This response is augmented with various types of 
antibiotics or chemotherapeutic drugs. These drugs will also be selected to exclude the unwanted organotropic side effects (symbolised by the thin arrow). These 
selection procedures therefore ‘overlook’ the effect of organotropic directed drugs on microorganisms. These have been called non-antibiotic effects. There may 
be interactions (direct or indirect) between antibiotics and non-antibiotics.
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The same two-sided activity has been seen in patients treated with 
chlorpromazine (a phenothiazine) for mental diseases in the beginning 
of the 1950’s, where ‘by accident’ they were also cured for TB) [27-29].

Also, modern new drugs (e.g. diclophenac) used for rheumatic 
diseases have an unexpected antimicrobial activity and are able to cure 
urinary tract infections [30-32].

Diclofenac and ibuprofen have also shown distinct antibacterial 
activity against Enterococcus faecalis and diclofenac has shown 
synergistic effects with the antipsychotic trifluoperazine [33].

2) Is the non-antibiotic activity of organotropic drugs limited to the 
field of the psychotherapeutic group or can it be found in other classes 
of pharmaceutical compounds? 

Intrinsically, there is no obvious reason why there should be a 
limitation to psychotherapeutic compounds. Thus, we should be vigilant 
with all compounds, irrespective if they are drugs, food additives or 
even normal molecules in our food or environment if they can affect 
either our organism or our parasites [34-36].

Antimicrobial activity has been found in many other compounds 
including flavanones, isoflavones and prenylflavanones [37,38]; 
antihistamines [39,40], antihypertensive agent methyl-L-DOPA [41]; 
cardiovascular drugs oxyfedrine and dobutamine [42]; local and 
general anaesthetics [17,43,44] and barbiturates [45].

A comprehensive search for antimicrobial activity of non-antibiotic 
drugs, (selected from 90 different pharmaceutical products) against 
Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, 
Candida albicans  identified numerous active compounds including 
paroxetine, buflomedile, bencyclane, hydroxyzine, risedronate, 
atomoxetine, oseltamivir, valproate, niclozamide and oxybendazol 
[35,46]. This study alone underlines the fact that the antimicrobial 
activity of compounds that were not developed for that purpose are not 
common and that this urgently needs to be taken into consideration-
whether it is for treatment, as a food additive or in the environment 
around us. This is probably only the tip of the iceberg: many more 
compounds need to be investigated in future to obtain a more 
representative picture.

3) All organotrophic drugs have, a priori, the possibility to interact 
with both the organs in the host and on the microorganisms in and 
outside the host (the patient). Therefore, each eukaryotic-directed 
compound in the clinic has to be considered to be a non-antibiotic until 
the opposite has been demonstrated [35,46]. 

This is currently generally not investigated during drug development 
but should be. 

4) Non-antibiotics have the potential to interfere with natural 
microbial flora of the host. What is the effect on the healthy host? 

While we are only just beginning to understand the importance of 

this microbiome, we can still only guess at the consequences of changes 
to it. In the light of their antimicrobial effect, these non-antibiotics 
would be expected to disturb the “ecological” balance. This topic has 
already attracted attention in the antibiotic research in 1980 [47,48]. 
Even food needs to be evaluated: grapefruit oil contains components 
which act as potential novel efflux pump modulators in methicillin-
resistant S. aureus bacterial strains [49]. 

5) Antibiotics and non-antibiotics can have a significant impact on 
the microbiota in the gut (and elsewhere in or on the organism). This 
will alter the nutritional content of the gut and which in turn may lead 
to the expansion of pathogenic (antibiotic resistant) populations [50] 
and lead to the development of disease [51]. 

Even though current studies of the correlation of antibiotic use with 
the development of diabetes are inconclusive [52], it becomes necessary 
to consider the additional influence of non-antibiotics in order to obtain 
a clearer picture both of the positive and negative side effects of the very 
different classes of non-antibiotics: pharmaceutical compounds, foods, 
food additives, chemicals in our environment, etc. and their possible 
interactions with each other or with the classical “antibiotics”. 

6) One of the clinically relevant consequences of inadequate regard 
for the prokaryotic effect of eukaryote-directed drugs might be that the 
beneficial effects obtained may be incorrectly ascribed. In other words, 
the understanding of the disease and its diagnosis and treatment may 
be based on a scientific or clinical fallacy. 

There are reports of specially-sensitive patients who were treated 
with the antihistamine (and neuroleptic) trimipramine for their irritable 
bowel syndrome. Their cure was not, as believed for the disease, but in 
reality, for their Helicobacter infection in the stomach (see discussion 
above [25,26]). This raises the questions of how many unknown 
(mental) diseases are infections and how many patients are “treated 
lifelong with neuroleptics” for unknown zoonosis and infections? 

7) Often organotrophic compounds are prescribed together 
with classical antibiotics/ chemotherapeutics. In the patient, the 
pharmacological response might be synergistic/ antagonistic or no 
interaction on the natural/pathogen microorganisms and the immune-
system. 

In a recent study, the combined action of dicloxacillin (DCX) 
in combination with thioridazine (TDZ) was found to be toxic in 
a normal porcine model for catheter-carried Staphylococcus aureus 
infections. Reduction of the dose of both revealed a synergistic activity 
between the antibiotic and the non-antibiotic [53]. Similar synergistic 
effects have been observed between thioridazine in combination 
with antibiotics for treating extensively drug-resistant infections of 
pulmonary tuberculosis [54,55]. 

These possibilities for active utilization of the antimicrobial 
potency of non-antibiotic have opened a new pharmacological world 
and several new possibilities for treating especially infections that we, 

Perspective Expectation References
Can antibiotic resistance be reversed? Yes [39,40,55-61]
Can pathogenicity and virulence be reduced by means of psychotherapeutics and/or other non-antibiotics and their analogues? Yes [62-66] 
Can the synergy between psychotherapeutics and “classical” antibiotics/chemotherapeutics be expoited (for example to reduce the 
dose)? Yes [53, 56,67-69]

Can new antibiotics be developed from the already known non-antibiotics Yes [19,54,55,64,70-74]
Can “purer” drugs be developed by utilizing stereo-specificity? Up until 1985, 85% of all drugs were mixtures Yes [71,72,75,76-78]
Will this polypharmacy have any influence on the pharmacokinetics or pharmacodynamics of clinical treatment for the patient/host Yes [60,75,79-86] 

Table 1: Possibilities for active utilization of the antimicrobial activity of non-antibiotics are listed below.
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up until now, have not been able to treat. The demonstration of the 
antimicrobial activity of non-antibiotics raises a number of exciting 
perspectives. These are illustrated in Table 1.

Poul Ehrlich was the first to note that methylene blue stained 
not only bacteria but also nervous tissue preferentially to other 
tissues, presumably because of their increased lipid content. There 
are considerable differences in the composition of membranes 
both between prokaryotes and eukaryotes and between different 
membranes in the eukaryotic cell. For example, cardiolipin is a major 
component in membrane domains in bacteria and mitochondria 
[87]. Other phospholipids are distributed in the various eukaryotic 
membranes in a decidedly non-random manner [88]. Since most of 
the non-antibiotics are lipophilic, they will naturally accumulate in 
membranes. Furthermore, the solubility of for example phenothiazine 
is different in different phospholipids [20] and therefore the effects of 
the non-antibiotic will be exerted locally even at the sub-cellular level. 
Interestingly, organism-wide proteomic studies have shown that the 
brain is the tissue with the second largest number of enriched proteins 
(318) (second only to the testis) and of these, many are low expression 
and membrane bound (and therefore potentially drug targets) [89]. 
Since it is calculated that 50% of drug targets are membrane proteins 
[90] (class I GPCRs (45%), nuclear receptors (2%), ligand-gated 
and voltage gated ion channels (5%) [91] while soluble proteins like 
enzymes constitute 29-50% [92-94] it is perhaps not so surprising 
that non-antibiotics can also influence neurological signalling and cell 
communication.

It would therefore be relevant to carry out a comparative scientific 
study of the frequency of infections, the bacterial flora and their 
resistance characteristics in patients. Perhaps this could be effectively 
carried out using psychiatric patients under long-term treatment 
with psychopharmacological drugs (especially those treated with 
phenothiazines, thioxanthenes or phenylpiperidines which have been 
shown to have non-antibiotic activities) [23].

In this discussion, we hope that we have illustrated that the clinical 
interaction is much more complex than generally taken into account. 
For the same reasons, the development of antibiotic resistance is equally 
complex-and the simple cessation of the use of antibiotics would not 
lead to the recovery of antibiotic sensitive microorganisms. In order 
to understand the complexity of resistance it will be necessary to 
investigate and include the many different parameters important also 
for the general resistance development-as illustrated in this biologically 
‘symmetric’ model [95].

Conclusion
There is a need for a general theory which describes interactions 

between the host organism, microorganisms and compounds 
(including drugs, pharmacological compounds and compounds which 
are chemically foreign or hostile to a biological system).

Thus, we are now able to fill more and more compounds into the 
gap described in the general model were the parasitotropic activity of 
organotropic drugs (non-antibiotics) earlier was totally neglected.

Previously, its importance was estimated to be zero in a mathematical 
model. A revision of the mathematical model to describe the influence of 
non-antibiotics in real life will result in a general theory of the interplay 
between host organism, microorganisms and drugs. These interactions 
may be ether synergistic (positive e.g. inhibit resistance development 
even up to reversal of resistance by boosting antimicrobial activities of 
classical antibiotic/chemotherapeutics), indifference, or antagonistic 

(negative: support pathogen growth, resistance development or 
interfere negative with the classical antibiotics/chemotherapeutics) as 
suggested already in 1979 [21-23,96]. The mathematical model will also 
have to include revisions to the ADME and to PK/PD considerations, 
resulting from the modified nutritional status in the gut.

Thus, the zero activity of non-antibiotics is a special case of the 
reality in the clinical pharmacology.

The instatement of non-antibiotics allows us to develop 
pharmacology into a general description of reality which encompasses 
both the ‘overlooked organ’ (the ‘parasites’ in and on us) and the 
compounds which affect them.
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