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Introduction
A wide variety of implants is currently used in orthopedic 

procedures. Most conventional implants do not possess antimicrobial 
activity and implant-related infections continue to be a significant 
complication. Implant-related infections occur in 0.7% to 4.2% of 
patients after orthopedic surgery and are a particular concern after 
prosthetic replacement arthroplasties [1-5]. The risk of infection is 
particularly high in patients receiving chemotherapy for orthopedic 
conditions, such as bone soft tissue tumors and rheumatoid arthritis. 
Indeed, the infection rate is 1–2% in patients with total knee 
arthroplasty, but 14.6–17% for cases of bone soft tissue tumors of the 
knee that underwent reconstruction with implants [6-10].

The treatment of orthopedic implant-related infections 
is challenging because bone infections require the long-term 
administration of antibacterial agents, irrigation, multiple surgeries, 
and implant removal or replacement. The prevention of such infections 
is therefore very important. Various biomaterial surface modifications 
of stainless steel and titanium orthopedic implants have been developed 
for prophylaxis against implant-related infections. The covalent 
attachment of polycationic groups, implantation of Ca+, N+, and F+ 
ions with antimicrobial agents, and alloying and surface processing of 
silver have been investigated. We have developed a technique to form a 
highly porous anodic oxide film on the surface of titanium implants and 
impregnate iodine into the pores; this strategy imparts antimicrobial 
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activity to the implants [11-19]. In general, iodine-supported 
titanium implants have a 5–10-μm-thick oxide film with >50,000 
pores/mm2 loaded with 10–12 μg/cm2 iodine. In our previous 
studies, we have demonstrated the in vitro antibacterial activity, 
in vitro cytocompatibility, and in vivo safety characteristics of iodine-
supported titanium implants [18]. Early results from ongoing clinical 
trials have also demonstrated the safety and effectiveness of these 
implants in patients [20-23]. We have observed that the iodine content 
on the implant surface decreases over time; however, temporal changes 
in the iodine content and the relationship between iodine content and 
antibacterial activity have not been investigated. The purpose of this 
study was to examine the time course of the iodine content using in vitro 
and in vivo experimental models and to demonstrate the relationship 
between iodine content and antibacterial activity. 

Materials and Methods
Study design

Iodine-supported titanium implants were produced in various 
shapes and with different quantities of iodine. in vitro antibacterial 
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activity against S. aureus and E.coli was investigated using implants 
with different iodine contents to determine the minimum effective 
iodine content required for antibacterial activity. The temporal change 
in iodine content in the implants over 1 year was also investigated using 
in vitro and in vivo rabbit models.

Iodine-supported implants

Iodine-supported titanium implants were produced by Prostec 
Instruments Company (Sabae, Japan) using a technique described 
previously [18,19]. Briefly, a 5–10-μm-thick anodic oxide film with 
>50,000 pores/mm2 was formed on the surface of titanium implants. 
Ionized iodine was electrodeposited within these pores to achieve the 
desired iodine content (0–13 μg/cm2 iodine). Four types of iodine-
supported titanium implants were developed as follows: (1) square 
plates (20 mm × 20 mm × 2 mm); (2) circular discs (6 mm diameter, 
2 mm thick); (3) washers (outer diameter 16 mm, inner diameter 6.5 
mm, 2 mm thick); and (4) screws (6.5 mm diameter, 16 mm length). 
The iodine content on implants was measured by X-ray fluorescence 
spectroscopy (Prostec Instruments Company).

In vitro temporal assessment of iodine contents in implants 

Square implants with iodine contents of 10–12 μg/cm2 (n = 3 per 
condition) were immersed in 30 mL of PBS in a 50-mL centrifuge tube 
and incubated at 37°C for various durations up to 1 year. After the 
specified periods (3 hours, 12 hours, 24 hours, 10 days, 50 days, and 1 
year), the implants were removed and the iodine content was measured 
by X-ray fluorescence spectroscopy (Prostec Instruments Company) 
and averaged for the three implants. Residual iodine is expressed as a 
percentage of the iodine content in the fresh implant.

In vivo temporal assessment of iodine contents in implants

A previously described rabbit model was used for the in vivo analysis 
[18]. All animal experiments were conducted with the approval of the 
Institutional Animal Care and Use Committee and carried out in strict 
accordance with its regulations. Mature female Japanese white rabbits 
(n = 15) weighing 2.5–3.0 kg were anesthetized by an intramuscular 
injection of ketamine hydrochloride (50 mg/kg; Warner–Lambert, 

Morris Plains, NJ, USA) and an intravenous injection of pentobarbital 
sodium (40–50 mg/kg). Each animal received three iodine-supported 
titanium implants (one circular disc, one washer, and one screw; iodine 
content, 10–12 μg/cm2) at three different anatomical sites (subcutaneous 
soft tissue, intra-articular, and endo-osseous) relevant for orthopedic 
implants (Figure 1).

For the subcutaneous soft tissue model, a circular disc was 
implanted in the dorsal aspect of the rabbit. The knee joint was used 
to model the joint and bone sites. A screw was inserted through a 
washer into the distal intra-articular end of the femur, with the screw 
and washer representing the bone and joint site, respectively (Figure 
1). At specific postoperative periods (14, 28, 90, 200, and 365 days), 
the animals were killed (n=3 per time point), implants were retrieved, 
and residual iodine was measured by X-ray fluorescence spectroscopy 
(Prostec Instruments Company). Values obtained for three animals at 
each time point were averaged for the analysis.

In vitro antibacterial activity

Circular disc implants (diameter: 20 mm; thickness: 2 mm) were 
used. Five types of implants were fabricated with different iodine 
content: 0 μg/cm2 (0% oxide layer), 3 μg/cm2 (20%), 7 μg/cm2 (50%), 
10 μg/cm2 (80%), and 13 μg/cm2 (100%). Note that 13 μg/cm2 was 
considered 100% because it is the standard amount in clinical implants 
[18]. Pure titanium implants were used as controls.

The implants were exposed to gram-positive S. aureus strain 
25923 (ATCC, Manassas, VA, USA) or gram-negative E. coli strain 
MG1655 (ATCC). The antibacterial activity of the implants was 
measured using a method approved by Japanese Industrial Standards 
as previously described [18]. Approximately 106 colony-forming units 
were inoculated on an autoclaved circular implant placed in a sterile 
glass Petri dish, which was then covered and incubated at 37°C for 2, 
6, 24, or 48 hours (n = 3 per implant type). At each time point, each 
implant was washed with 5 mL of phosphate-buffered saline (PBS). The 
washed eluate was diluted 1:50 with PBS and 100 μL of the dilute eluate 
was incubated in Brain Heart Infusion broth for S. aureus and LB broth 
(1% w/v tryptone, 0.5% w/v yeast extract, 0.5% w/v NaCl) for E. coli at 
37°C. The number of bacterial colonies was counted after 24 hours and 
the average number of colonies for the triplicate implants at different 
incubation periods (2–48 hours) was used to determine antibacterial 
activity against S. aureus and E. coli (Figure 2).

Washer Screw

Circular
Implant

Figure 1: Study design for in vivo temporal assessments of the iodine content 
in implants. Each rabbit received three implants—a subcutaneous circular 
implant, an intra-articular washer, and an endo-osseous screw. Animals were 
euthanized at various time points over 1 year and implants were retrieved to 
measure the residual iodine
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Figure 2: Study design for in vitro antibacterial activity assessment using a 
modified version of the Japanese Industrial Standards method.
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For the statistical analysis, Student's t-tests were performed 
for parametric tests and differences among means were consider 
statistically significant when p < 0.05. 

Results
In vitro temporal assessment of iodine quantities in implants 

Residual iodine in the implants decreased gradually over the 
duration of the in vitro study. The average residual iodine was 68.7% at 
3 hours, 62.7% at 12 hours, 53.5% at 24 hours, 41.6% at 10 days, 24.8% 
at 50 days, and 29.8% at 365 days (Figure 3).

In vivo temporal assessment of iodine quantities in implants 

Residual iodine in the implants also decreased gradually over time 
in the in vivo study at all three anatomical locations (Figure 4). 

In the subcutaneous soft tissue (circular implant), the average 
residual iodine was 59.7% at 14 days, 54.4% at 28 days, 34.1% at 90 
days, 23.1% at 200 days, and 27.3% at 365 days. In the intra-articular 
location (washer implant), the average residual iodine was 54.7% at 14 
days, 51.1% at 28 days, 53.7% at 90 days, 42.7% at 200 days, and 31.5% 
at 365 days. Similarly, in the intra-osseous location (screw implant), the 

average residual iodine was 47.4% at 14 days, 47.1% at 28 days, 34.9% at 
90 days, 32.4% at 200 days, and 30.4% at 365 days.

In vitro antibacterial activity

There was no reduction in the number of bacterial colonies in the 
pure titanium implants and the 0% oxide layer groups over 48 hours of 
incubation, and there was no significant difference between these two 
groups. However, all four iodine-supported implant groups (20%, 50%, 
80%, and 100% iodine contents) showed significantly fewer S. aureus 
and E. coli colonies than the control groups, starting 2 hours after 
incubation (p<0.05). Longer incubation periods resulted in greater 
decreases in the number of bacterial colonies in all iodine-supported 
implants, with complete disappearance of S. aureus and E. coli colonies 
by 6 hours in ≥80% iodine groups (Figure 5). Implants with ≥20% 
iodine completely inhibited S. aureus colonies after 24 hours and E. coli 
colonies after 6 hours (Figure 6 and 7).
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Figure 3: In vitro temporal profile of iodine content in implants, showing an 
initially rapid attenuation, followed by a more gradual attenuation during 
incubation in phosphate-buffered saline (PBS). Implants retained approximately 
30% of the initial iodine content at the end of 1 year.
The vertical axis is for iodine content.
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Figure 4: In vivo temporal profile of iodine content in implants, showing an 
initially rapid attenuation, followed by a more gradual attenuation at all three 
anatomical sites. All implants retained approximately 30% of the initial iodine 
content at the end of 1 year.
The vertical axis is for iodine content.
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Figure 5: In vitro antibacterial activity of titanium implants with different iodine 
contents on S. aureus after 6 hours of incubation. A: pure titanium implant, 
B: oxide layer with 0% iodine, C: 20%, D: 50%, E: 80%, and F: 100% iodine 
contents (where 100% corresponds to 13 μg/cm2 iodine). The number of 
bacterial colonies was high in pure titanium implant and implants with an oxide 
layer with 0% iodine. In contrast, the number of colonies decreased gradually 
as the iodine content in implants increased.
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Figure 6: In vitro antibacterial activity of titanium implants with different 
iodine contents on S. aureus. While pure titanium implants and 0% iodine 
implants had no antibacterial activity, implants with ≥20% iodine showed 
a significant decrease in the number of colonies compared with the control 
group beginning at 2 hours (p<0.05). Implants with 100% iodine exhibited 
significantly greater and faster decreases in the number of colonies compared 
to 20% iodine implants (p<0.05). Implants with ≥20% iodine showed complete 
inhibition of bacterial colonies after 24 hours.
The vertical axis is for bacterial colonies.
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Discussion
The in vitro and in vivo experiments showed similar temporal 

patterns of attenuation of iodine contents in the implants. In the in vitro 
analysis, an initially rapid attenuation was followed by a more gradual 
decrease, with approximately 30% of the initial iodine maintained at 
1 year. In the in vivo analysis, the iodine content in implants similarly 
decreased rapidly to 50–60% at 28 days, followed by a more gradual 
decline, with approximately 30% of initial iodine remaining in the 
implants at 1 year. We speculated that initial period of rapid decline 
can be attributed to the superficial pores, while the prolonged release is 
explained by the deep pores in the oxide layer.

The in vitro antibacterial activity of iodine-supported titanium 
implants was related to the iodine quantity in a dose-dependent and 
duration-dependent manner. While implants with high iodine contents 
(≥80%) completely inhibited S. aureus and E. coli colonies by 6 hours, 
implants with lower iodine contents (≥20%) also completely inhibited 
S. aureus colonies by 24 hours and E. coli colonies by 6 hours. These 
results suggest that implants with iodine contents of ≥20% of the levels 
typically used in clinical applications possess sufficient antibacterial 
activity to prevent implant-related infections.

Based on the observed antibacterial activity and the temporal 
attenuation profile of the implants, currently used iodine-supported 
titanium implants possess adequate iodine to maintain antibacterial 
activity, even after 1 year of implantation. Further, the attenuation 
was similar at subcutaneous, intra-articular, and endo-osseous sites, 
suggesting that the implants effectively prevent infections in each of 
these locations.

The onset of implant-related infections can be early (1 to 3 months 
after implantation), delayed (within several months to 1 year after 
implantation), or late (beyond 1 year; infection carried by the blood 
from a non-surgical site infection) [24]. Therefore, it is crucial that the 
antibacterial implant retains antibacterial activity over long periods. 
Iodine-supported titanium implants are therefore particularly useful as 
they not only prevent early and late postoperative infections, but also 
likely prevent delayed infections. The long-term antibacterial activity 
of iodine-supported titanium implants is beneficial for implants used 
to treat fractures. Iodine-supported titanium implants are particularly 

useful in cases of open fractures, which are associated with a higher risk 
of infection, and in cases with a risk of poor bone union, which may 
require plates and intramedullary nails for periods exceeding a year.

Several other surface treatment strategies, such as coating with 
antibiotics or silver ions, have also been used to impart antimicrobial 
properties to implant surfaces. However, many antibiotics act against 
a narrow spectrum of bacteria, and the emergence of resistant bacteria 
is an important risk [25]. Furthermore, the rapid release of antibiotics 
(80% in 60 minutes) limits their ability to effectively prevent infections 
over long periods [26]. Silver-coated orthopedic implants also show a 
rapid release of silver ions in the first three days, with only about 30% 
remaining after 14 days and antibacterial activity lasting for about 
28 days [27,28]. Furthermore, toxicity resulting from high silver ion 
concentrations in vivo remains a concern. In particular, toxicity to bone 
cells and the accumulation of silver ions in the kidney, spleen, liver, and 
brain have been reported [29-32]. 

Iodine-supported titanium implants offer distinct advantages over 
implants with antibiotics and silver ion surface modifications. First, 
iodine has a wide antibacterial spectrum, is active against bacteria, 
viruses, fungi, and spores, and does not induce resistance in bacteria. 
Second, iodine has proven safety as a disinfectant and contrast agent 
[33]. Third, iodine-supported titanium implants possess long-term 
antibacterial activity that lasts longer than 1 year. In our previous in vitro 
and clinical studies, we demonstrated that iodine-supported titanium 
implants have sufficient antibacterial activity, but no cytotoxicity or 
deleterious effects on thyroid function [18,33]. We have also shown that 
iodine-supported titanium implants possess similar high bone affinity 
and osteoconductive properties to those of pure titanium implants [18]. 

This study had a few limitations. First, to examine antibacterial 
activity, we prepared titanium implants with low iodine contents to 
approximate the attenuated iodine content in implants after various 
periods. However, the in vivo release profile and antibacterial activity 
of these low-iodine-content titanium implants may differ from those 
of actual implants. Second, a relatively small number of implants 
were used per group. However, low variability within groups and 
repeated measurements from the same specimens enabled us to detect 
statistically significant differences.

In summary, iodine-supported titanium implants retain 
approximately 30% of the iodine content at 1 year in both in vitro and in 
vivo conditions. As implants with iodine contents of ≥20% demonstrated 
sufficient antibacterial activity, current iodine-supported titanium 
implants can be expected to possess adequate antibacterial activity to 
prevent implant-related infections, even after one year of implantation, 
and should be strongly considered for orthopedic applications.
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