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Abstract

Several molecular mechanisms appear to play a major role in melanoma genesis and progression. Current
targeted therapies focus on contrasting the activation of RAS/RAF/MEK/ERK and, to a less extent, PI3K/AKT
pathways. Development of inhibitors of key effectors (mainly, BRAF mutant and MEK) has significantly improved
treatment of patients with advanced melanoma. However, only rarely tumours present a durable regression due to a
large variety of acquired and intrinsic mechanisms that drive resistance to the main targeted inhibitors. All these
evidence suggest that in melanoma, as probably in all types of cancer, use of a combinatorial treatment approach,
instead of targeting a single component of melanomagenesis pathways, could delay or prevent the emergence of
resistance mechanisms responsible of tumour relapse. In this sense, a crucial step is thus represented by the full
knowledge of such molecular mechanisms.
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Introduction
Molecular mechanisms underlying pathogenesis of melanoma are

complex. Single genetic or epigenetic alterations are not crucial
person; rather, the interaction of some or most of such modifications
may participate into the development and progression of the disease as
well as contribute in generating distinct biological subsets of
melanomas with different clinicopathological behaviors. Specific
alterations have been described as deeply involved in
melanomagenesis: induction of cell proliferation and/or impairment
of the mechanisms controlling the melanocyte senescence (both
promoting primary clonal selection and expansion), and suppression
of the apoptosis (sustaining the cancer cell survival and tumor
progression).

According to such a complex scenario, targeting a single
component of the multiple pathways involved in pathogenesis is
unlikely to yield a durable anti-tumor response in melanoma patients.
Indeed, activation of alternative pathogenetic effectors is at basis of the
development of resistance to target inhibitors.

Among others, the cascade of Ras, Raf, Mek and Erk proteins -
which constitutes the mitogen-activated protein kinase (MAPK)
pathway-has been reported to play a crucial role in melanoma
pathogenesis [1]. Indeed, the ERK1/2 proteins have been found to be
constitutively activated in melanoma, mostly as a consequence of
mutations in upstream components of the pathway and their increased
activity has been implicated in rapid cell growth as well as enhanced
cell survival and resistance to apoptosis [1]. On this regard, activating
mutations in BRAF and NRAS genes were found in approximately
45% and 15% of all melanomas, respectively (somatic mutations in
such genes are mutually exclusive [2,3].

Treatment of patients with advanced melanoma has actually several
effective options. Targeted therapy with BRAF inhibitors
(vemurafenib, dabrafenib) or MEK inhibitors (trametinib) as well as
immunomudulatory compounds [the anti-CTLA4 agent (ipilimumab)
and the anti-PD-1 or anti-PD-L1 agents (nivolumab,
lambrolizumab,MPDL3280A)] are all associated with improved
clinical benefits, thus allowing to overcome the ineffectiveness of the
conventional therapies [4].

Vemurafenib and dabrafenib have shown to benefit patients with
BRAF activating mutation through achievement of a rapid tumour
shrinkage in the majority of cases [5]. Treatments with both these
drugs improve response rates and progression-free survival (PFS),
with a favourable impact on overall survival (OS) [5]. MEK inhibitors
alone or combined with a BRAF inhibitors have been recently
demonstrated to exert a similar clinical efficacy [6].

Vast majority (up to 80%) of melanoma patients carrying BRAF
mutations shows clinical and pathological response to therapy-with
different rates of tumour reduction-when treated with either a BRAF
inhibitor or a MEK inhibitor [7,8]. However, most of them develop
resistance within 6-8 months after treatment initiation, as
consequence of reactivation of the MAPK pathway or activation of
alternative signalling pathways [9-13]. Nevertheless, a fraction of cases
are primarily refractory due to an intrinsic resistance to such
inhibitors [13].

The development of tumor resistance to single targeted agents
appears inevitable and, given the high clinical responses, it is of pivotal
importance to identify alternative therapies that overcome this
problem [9-13].

Targeted Therapies and MAPK Pathway Components
Although majority of molecular mechanisms involved into the

development, progression, and resistance-to-therapy of melanoma
remains still largely unknown, several genes and cell-signalling
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pathways have been implicated [14]. Canonical activation of MAPK
pathway occurs when stimulation of the growth factor receptor leads
to the activation of RAS family member (H-, N- or KRAS). Activated
RAS interact with RAF isoform (A-, B- or CRAF) with consequent
activations of RAF notably, RAF activation appears only after the
formation of homo–or heterodimers between different isoform, that
lead to the phosphorylation of MEK which activates ERK through a
phosphorylation event [14-19].

Despite RAS has been largely implicated in tumour initiation and
promotion, RAS itself has not become a successful target of therapy
[20,21]. The strategies used to develop drugs able to inhibit the RAS
activity are aimed at preventing its interaction with several
components of the upstream or downstream signalling pathways
regulated by this protein [21]. In this sense, a promising way of
interfering with Ras function seemed to be the inhibition of
farnesyltransferase, the enzyme coupling a 15-carbon isoprenyl group
to Ras proteins, by farnesyltransferase inhibitors. The block of
farnesylation markedly impairs the functioning of active RAS protein
[22]. While a good in vitro antitumour activity has been reported in

human melanoma cell lines, with downregulation of ERK and/or AKT
and induction of apoptosis [22,23], farnesyltransferase inhibitors have
always failed to be effective in melanoma patients (even if all cohorts
treated with these agents were never selected for the activated-RAS
status [24,25]). Lonafarnib, a recently discovered farnesyltransferase
inhibitor, did not significantly inhibit growth of metastatic melanoma
cells nor sensitize melanoma cells to the chemotherapeutic agents
tested. In contrast, lonafarnib significantly augmented the growth
inhibitory effects of the pan-RAF inhibitor sorafenib, inducing marked
apoptosis and abrogated invasive melanoma growth [26]. Therefore,
combination of farnesyltransferase inhibitors with other pathway-
targeted drugs or, alternatively, a more stringent selection of the
patients’ cohorts could be helpful to increase the clinical efficacy of
such compounds.

Therapeutic strategies have thus been focused on inhibiting
downstream effectors of the RAS-driven pathways, MAPK and PI3K-
AKT. Table 1 summarizes the main targeted agents introduced in
clinical practice, as registered into the ClinicalTrial.gov database of the
U.S. National Institutes of Health (at the https://clinicaltrials.gov/).

Target Clinical agents Activity

BRAF Vemurafenib Dabrafenib LGX818
RO5212054

Selectively binds to and inhibits activated BRAF, inhibiting the proliferation of tumor cells with
mutated BRAF gene

MEK

Trametinib Selumetinib
Pimasertib TAK-733MSC2015103B

Binds to and inhibits MEK 1 and MEK 2, resulting in inhibition of growth factor-mediated cell
signaling and tumor cell proliferation

Cobimetinib Binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of activating ERK2
phosphorylation and tumor cell proliferation

RO4987655 Binds to and inhibits MEK 1, which may result in inhibition of MEK-dependent cell signaling and
tumor cell proliferation

Dual MEK-RAF RO5126766 Specifically inhibits kinase activities of Raf and MEK, resulting in inhibition of target gene
transcription that promotes malignant cell transformation

Pan-RAF

Sorafenib Blocks RAF kinase (regardless of mutation status) and other kinases that control cell division
and proliferation

RAF265 Binds and inhibits Raf kinases and VEGFR-2, which may result in reduction of tumor cell
growth and proliferation

PI3K BKM120 XL147 ZSTK474 PX-866
GDC-0941

Reversibly binds to class 1 PI3Ks in an ATP-competitive manner, inhibiting the production of
PIP3 and activation of the PI3K signaling pathway; this may result in inhibition of tumor cell
growth and survival in susceptible tumor cell populations

AKT MK2206 GSK2110183 GDC-0068 Binds to and inhibits AKT in a non-ATP-competitive manner, resulting in inhibition of the
PI3K/AKT signaling pathway and tumor cell proliferation and induction of tumor cell apoptosis

mTOR

AZD8055 TemsirolimusRidaforolimus Binds to and inhibits mTOR, resulting in decreased expression of mRNAs necessary for cell
cycle progression and arresting cells in the G1 phase of the cell cycle

Sirolimus

Binds to FKBP-12 to generate an immunosuppressive complex that binds to and inhibits
mTOR, resulting in inhibition of T lymphocyte activation and proliferation that occurs in
response to antigenic and cytokine (IL-2, IL-4, and IL-15) stimulation and inhibition of antibody
production

Everolimus OSI-027 Binds to and inhibits both the raptor-mTOR complex 1 (TORC1) and the rictor-mTOR complex
2 (TORC2), resulting in tumor cell apoptosis and inhibition of tumor cell proliferation

Dual PI3K/mTOR

XL765/SAR245409 BEZ235 GDC-0980 Inhibits both PI3K kinase and mTOR kinase, which may result in tumor cell apoptosis and
growth inhibition in susceptible tumor cell populations.

GSK2126458
Binds to and inhibits PI3K in the PI3K/mTOR signaling pathway, which may trigger the
translocation of cytosolic Bax to the mitochondrial outer membrane, increasing mitochondrial
membrane permeability and inducing apoptotic cell death
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SF1126
Selectively binds to cell surface integrins and, upon cell entry, the agent is hydrolyzed to the
active drug SF1101; Inhibits all isoforms PI3K, mTOR and DNA-PK, wich may inhibit tumor cell
and tumor endothelial cell proliferation and survival

CDK4/6 LEE011 LY2835219 Palbociclib
Specifically inhibits CDK4 and 6, thereby inhibiting Rb protein phosphorylation, that prevents
CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase,
suppressing DNA synthesis and inhibiting cancer cell growth

Src Dasatinib Binds to and inhibits the growth-promoting activities of SRC-family protein-tyrosine kinases

Met Tivantinib
Binds to the c-Met protein and disrupts c-Met signal transduction pathways, which may induce
cell death in tumor cells overexpressing c-Met protein or expressing consitutively activated c-
Met protein

IGF1R Ganitumab
Binds to membrane-bound IGF-1R, preventing binding of the ligand IGF-1 and the subsequent
triggering of the PI3K/Akt signaling pathway; inhibition of this survival signaling pathway may
result in the inhibition of tumor cell proliferation and the induction of tumor cell apoptosis

HSP90 XL888
Specifically binds to Hsp90, inhibiting its chaperone function and promoting the proteasomal
degradation of oncogenic signaling proteins involved in tumor cell proliferation and survival;
inhibition of tumor cell proliferation may result

CTLA-4 Ipilimumab enhances T-cell activation and blocks B7-1 and B7-2 T-cell co-stimulatory pathways

PD-1 Nivolumab
Binds to and blocks the activation of PD-1, an Ig superfamily transmembrane protein, by its
ligands PD-L1 and PD-L2, resulting in the activation of T-cells and cell-mediated immune
responses against tumor cells or pathogens

PD-L1 MDX-1105 Pembrolizumab MPDL3280A
Binds to PD-1, an inhibitory signaling receptor expressed on the surface of activated T cells,
and blocks the binding to and activation of PD-1 by its ligands, which results in the activation of
T-cell-mediated immune responses against tumor cells

Interleukin-2 Aldesleukin
Binds to and activates IL-2 receptor; activation of tyrosine kinase Jak3; and phosphorylation of
tyrosine residues on IL-2R beta chain, resulting in an activated receptor complex. may induce
T cell-mediated tumor regression in some tumor types

Table 1: Principal targeted therapies in completed or on-going clinical trials

Targeting BRAF
BRAF is the second kinase in the cascade of MAPK pathway: the

identification that a high percentage of melanomas is driven by
oncogenic BRAF has led to explore the most effective ways of
inhibiting the constitutively active MAPK pathway. From these
studies, BRAF inhibitors have been confirmed to represent the most
promising agents for treating BRAF-mutant melanomas.

The first drug developed against BRAF was the BAY 43-9006 or
sorafenib, which is however unspecific for mutated BRAF and
suppresses activity of several different kinases (indeed, it is recognized
as a multikinase inhibitor) [27]. This lack of target specificity produced
a negative consequence on the outcome of the treatment of melanoma:
in fact sorafenib was proven to be clinically ineffective as either single
agent or in combination with chemotherapeutic drugs (i.e. carboplatin
and paclitaxel) [28-30].

Vemurafenib (PLX4032), a second generation anti-BRAF
compound that acts as potent and selective inhibitor of mutated BRAF
kinase, has been demonstrated to be highly effective in melanoma
patients carrying the V600EBRAF mutation [31]. Based on
outstanding results shown from phase I and II studies, a randomised
phase III study of vemurafenib compared to dacarbazine as standard
treatment was launched and rapidly completed [32]. As hypothesized,
patients treated with vemurafenib presented an overall survival at 6
months of 84% (95% CI: 78-89) as compared to patients treated with
dacarbazine showing an overall survival of 64% (95% CI: 56-73) [32].
Additionally, patients from vemurafenib group presented a relative
reduction of 63% in the risk of death and of 74% in the risk of either
death or disease progression, as compared with those undergoing

dacarbazine treatment [32]. Reproducing the same good clinical
activity of vemurafenib, dabrafenib (previously known as
GSK2118436) has been recognized as an additional potent and specific
BRAF mutant inhibitor: it significantly improved progression-free
survival as compared with dacarbazina [33]. Interestingly, dabrafenib
seems to be equally active on different mutations at codons 600 of the
BRAF gene (V600E/K/D/R) [33-35]. Overall, a clinical benefit has
been reported up to an unprecedented 80% rate of BRAF-mutated
patients treated with vemurafenib or dabrafenib; response to each of
these oral agents occurs within few days or weeks [36].

In addition to the inhibitory activity in BRAF-mutant cells, which is
revealed by the decreased level of phosphorylated ERK1/2 proteins
and consequent growth arrest, vemurafenib and dabrafenib also can
activate MAPK pathway in tumour cells with a wild-type BRAF
through RAF-mediated induction of ERK1/2 phosphorylation [37,38].
It has been shown that wild-type RAF kinase activation induces RAF
dimerization with paradoxical increase in MAPK signalling as result of
increased dimer formation (CRAF-CRAF or BRAF-CRAF) that in
turn activates MEK and, subsequently, ERK. This process is enhanced
by the presence of an oncogenic RAS mutation [38-41]. The
paradoxical activation of ERK might explain the formation of
keratoacanthomas and squamous cell carcinomas among patients
treated with BRAF inhibitors as well as the development of an
acquired resistance to these drugs [38,41]. In fact, even though the
response rates are high, the duration of response has been limited due
to development of resistance: the median duration of response was 6
to 8 months.
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Targeting MEK
Since reactivation of the downstream MEK-ERK pathway seems to

represent the main mechanism of resistance to BRAF inhibitors, a
promising strategy for overcoming such a limited persistence of the
antiproliferative effects was to introduce new compounds blocking
MEK1/2 proteins into the treatment options; indeed, several MEK
inhibitors have been tested in clinical trials. While BRAF inhibitors
only inhibit ERK signalling in cells with mutant BRAF, MEK
inhibitors block ERK pathway in both tumour and normal cells. As
single agents, these compounds (AS703026, AZD6244, E6201,
GSK1120212, GDC0973, MEK162) have shown a markedly high
activity in patients carrying tumours with constitutive activation of the
RAS/BRAF/MEK/ERK signalling cascade. Detection of RAS mutations
in primary tumours seems to represent the strongest marker for
selecting patients with the highest chance to respond to MEK
inhibitors; AS703026 and AZD6244 have activity in KRAS mutant
colon cancer cell lines/xenografts in combination with cetuximab
[42,43], whereas GSK1120212 (also known as trametinib) has been
found to be effective in NRAS-mutated melanoma [44]. In melanoma
patients carrying BRAF mutations, the response to MEK inhibitors
seems to be partially dependent on exposition to prior therapy with
BRAF inhibitors; for GSK1120212, a significant clinical activity was
observed in BRAF-inhibitor-naïve patients only [44,45]. Similarly, the
response seems to hinge on status of the PI3K-AKT pathway: for
selumetinib (AZD6244) and E6021 a significantly low responsiveness
to MEK inhibitors was found in BRAF mutant melanomas expressing
high levels of phosphorylated AKT [46] or presenting PTEN
inactivation with subsequent stimulation of downstream PI3K
signalling [47], respectively. In other words, coexistence of an
unaffected PI3K-AKT status may contribute to increase sensitivity to
MEK inhibitors in melanomas whose MAPK pathway is activated

through oncogenic mutations in BRAF gene. Finally, the MEK
inhibition has been demonstrated to abrogate the CRAF-dependent
activation of ERK in wild-type BRAF cells, contributing to reduce the
chances of cutaneous adverse events [48]. Current clinical
investigations have shown great promise with the combination of
targeted therapies as a new effective strategy of melanoma treatment.
A combined treatment with MEK and BRAF inhibitors in BRAF
mutated metastatic patients showed a significant improvement of the
progression-free survival rates [49], providing further support to the
hypothesis that this could be the way for a better management of such
melanoma cases. Actually, a number of clinical trials of trametinib in
combination with other targeted drugs, whose activity is somehow
interfering with the MAPK-driven tumour growth, are underway and
expected to show great promise. As an example, it has been recently
demonstrated that MEK inhibitors may enhance the ability of histone
deacetylase (HDAC) inhibitors to induce apoptosis in tumour cells
with constitutive activation of the BRAF-MEK-ERK signalling cascade
both in vitro and in vivo [50].

Tables 2 [9,10,49,51-54] and 3 [9,10,49,51,55] report the main
clinical trials with targeted agents for treatment of advanced
melanoma.

Mechanisms of Resistance to MAPK-Targeted Therapy.
Although the antitumor effects of target therapy are striking,

intrinsic and acquired resistance limits the therapeutic benefit of this
approach [6,56]. On this regard, is it to be underlined that vast
majority of data about such an issue is related to the resistance to
BRAF inhibitors, since vemurafenib and dabrafenib have been the
most extensively studied, both preclinically and clinically. 

Reference Trial No. of
pts

Target Molecular
alteration

Agent(s) Clinical Benefits Adverse events

Chapman
2011

Phase III 675 BRAF BRAFV600E mut Vemurafenib ORR: about 50%; PFS: 5.3
months; OS: 84% at 6
months

arthralgia, fatigue, cutaneous events, squamous
cell carcinoma (SCC), keratoacanthoma (KA), or
both

Hauschild
2012

Phase III 250 BRAF BRAFV600 mut Dabrafenib ORR: about 60%; PFS: 5.1
months; OS: 42% at 5
months

arthralgia, pyrexia, fatigue, headache,
hyperkeratosis, papillomas, palmar-plantar
erythrodysesthesia, SCC, KA, basal cell
carcinoma, mycosis fungoides

Robert 2012 Phase III 322 MEK BRAFV600 mut Trametinib ORR: about 22%, PFS: 4.8
months; OS: 81% at 6
months

rash, diarrhea, nausea, vomiting, fatigue,
peripheral edema, alopecia, hypertension,
constipation, central serous retinopathy and
retinal-vein occlusion

Flaherty
2012

Phase
I/II

247/162 BRAF+
MEK

BRAFV600E/K

mut
Dabrafenib+
Trametinib

ORR: about 76%, PFS: 9.4
months; OS: 41% at 12
months

pyrexia, chills, fatigue, rash, nausea, vomiting,
diarrhea, abdominal pain, peripheral edema,
cough, headache, arthralgia, night sweats,
decreased appetite, constipation, and myalgia

Ascierto
2013

Phase II 71 MEK BRAFV600 mut MEK162 PRR: about 20%, OR+SD:
52%

rash, diarrhea, acneiform dermatitis, creatine
phosphokinase (CK) elevation, fatigue, peripheral
edema, central serous retinopathy-like retinal
events.NRAS mut PRR: about 20%, OR+SD:

63%

Catalanotti
2013

Phase II 15 MEK BRAFV600e/kmut Selumetinib ORR: about 11%, PFS and
OS: data pending

rash, fatigue, elevated liver function tests,
lymphopenia, hypoalbuminemia, dyspnea,
cardiac function
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Carvajal
2013

Phase II 48 MEK GNAQ mut Selumetinib ORR: about 15%, PFS and
OS: data pending

CPK elevation, LFT elevation, rash, lymphopenia,
edema

Table 2: Targeted therapy single agents and combinatorial testing in melanoma

Intrinsic resistance
Approximately 20% of patients with BRAF mutated melanoma

tumours are not responsive to the treatment at all (vemurafenib or
drabafenib) due to intrinsic resistance [13]. Because melanoma
exhibits a wide spectrum of tumour-associated genomic lesions and a

high degree of inter- and intratumoral heterogeneity, the mechanisms
of intrinsic resistance to RAF inhibitors are likely to be diverse:

- Gene amplification and/or overexpression of Cyclin D1, which
contrasts the activity of the cyclin-dependent kinase inhibitor
p16CDKN2A and stimulates the CyclinD1-RB pathway [57] (Table 3);

Reference Targeted therapy Number of
patients
(ratio)

Patient population Response rate
(95% CI)

Median
PFS

Median OS 6-month
OS rate

12-month
OS rate

Chapman
2011

Vemurafenib 675 (1:1) Previously untreated 48% (42–55) 6.9 months 13.6 months 84% 56%

Dacarbazine 5% (3–9) 1.6 months 9.7 months 64% 44%

Hauschild
2012

Dabrafenib 250 (3:1) Previously
untreated
(except HD IL-2)

50% (42–57) 5.1 months 18.2 months NR NR

Dacarbazine 6% (2–16) 2.7 months 15.6 months NR NR

Robert 2012 Trametinib 322 (2:1) One previous treatment
allowed, except BRAF or
MEK
inhibitors or ipilimumab

22% (17–22) 4.8 months NR 81% NR

Dacarbazine or paclitaxel 8% (4–15) 1.5 months NR 67% NR

Flaherty
2012

Dabrafenib+trametinib (150
mg/1mg)

247 (1:1:1) One previous treatment
allowed, except BRAF
inhibitor

50% (36-64) 9,2 months NR NR 26%

Dabrafenib+trametinib (150
mg/2mg)

76% (62-86) 9.4 months NR NR 41%

Dabrafenib 54% (40-67) 5.8 months NR NR 9%

Robert 2012 Selumetinib+Dacarbazina 91 (1:1) Previously untreated 40% (18-45) 5.6 months 13.9 months 40% NR

Dacarbazina 26% (12-46) 3 months 10.3 months 22% NR

Table 3: Summary of phaseII/III randomized trials for melanoma

Figure 1: Main known mechanisms (intrinsic and acquired) by
which BRAF mutant cells develops drug resistance against RAF and
MEK inhibitors.

• Less of PTEN tumour suppressor protein and consequent
increased basal level of AKT signalling [58];

• Silencing of the NF1 gene, which either promotes RAS activation
either impairs the mechanisms regulating the senescence process
controlling the cell proliferation [59];

• Increased activity of protein kinase D3 (PRKD3), with activation
of the PI3K-AKT signalling in presence of a specific inhibition of
the oncogenic BRAF [60].

Figure 1 summarizes the different resistance mechanisms which are
preexistent (giving an intrinsic refractoriness) or activated following
the drug administration (favoring the block escape in a MAPK-
dependent or MAPK-independent manner) to the treatment with
inhibitors of the RAS-RAF-MEK-ERK pathway.

To better understand the reasons why all these apparently different
molecular alterations are implicated in conferring resistance to BRAF
or MEK inhibitors in melanoma cells, it is necessary to keep in mind
the relationship between RAF/MEK/ERK activation and
melanomagenesis. As is common knowledge, oncogenic BRAF mutant
strongly stimulates cell cycle progression by activation of downstream
MEK/ERK pathway. However, the BRAF-driven melanocytic
proliferation needs the coexistence of alterations in additional cell-
cycle factors (such as p53 deficiency, genetic/epigenetic inactivation of
p16CDKN2A gene, increased levels of active AKT) in order to
promote melanoma growth and progression [61]. In a subset of
melanomas, such additional pathogenetic alterations acquire a
prevalent role and tumour cell proliferation becomes independent or
less dependent on activation of BRAF/MEK/ERK pathway.
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Independently from the functional status BRAF/MEK/ERK
pathway, overexpression of Cyclin D1 may drive cell cycle entry and
uncontrolled growth: increased Cyclin D1 protein expression
determines a marked increase in activating bind to the CDK4/6
kinases and in phosphorylation of the RB protein. In support of this
overexpression experiments showed that introduction of Cyclin D1
into previously drug sensitive cell lines did facilitate cell cycle entry
and proliferation even when BRAF was inhibited [57].

As mentioned above, the loss of PTEN function results in
accumulation of PIP3 mimicking the effect of PI3K activation and
triggering the activation of its downstream effectors like AKT. Hyper-
activated AKT has been shown to promote cell proliferation, possibly
through down-regulation of the cyclin-dependent kinase inhibitor p27
and the up-regulation of Cyclins E and D1 [62,63]. Differential
mechanisms of AKT activation demand an upstream PI3K activation,
since activating mutations of AKT are nearly absent in melanoma
(only rare mutations in AKT1 and AKT3 genes have been indeed
reported in a limited number of melanomas and melanoma cell lines
[64-66]). On this regard, the PI3K signalling seems to be directly
increased by the occurrence of activating mutations in its kinase
domain [67].

AKT regulates the apoptotic response to a variety of stimuli via its
ability to interact with a number of key players in the apoptotic
process, its intracellular accumulation does result in the suppression of
apoptosis and induction of cell survival [64]. AKT can directly
phosphorylate BAD (Bcl-2 antagonist of cell death) and MDM2; in
turn, BAD inactivation affects the interaction of this protein with with
anti-apoptotic members of the Bcl-2 family of proteins (Bcl-2, Bcl-XL)
[68-69] and MDM2 leads to increases p53 degradation [70,71]. In
addition, the increase in AKT signalling suppresses the expression of
BIM (pro-apoptotic member of Bcl-2 protein family), with inhibition
of its pro-apoptotic activity [72]: the expression levels of BIM protein
is indeed regulated by silencing of PTEN and subsequent activation of
the PI3K-AKT pathway in conjunction with the activation of
BRAF/MEK/ERK pathway [73]. The presence of PTEN inactivation
may therefore interfere with the BRAF inhibition by reducing the
levels of BIM protein and, thus, the extent of apoptotic induction; as a
confirmation of this, a simultaneous treatment with BRAF and PI3K
inhibitors has been reported to enhance BIM expression and increase
the level of induced apoptosis [58].

Hence, the occurrence of a p53 deficiency or, more in general, a
status of apoptosis escape, with an unbalanced ratio between pro- and
anti-apoptotic effectors-all events found to cooperate with BRAF
mutations in driving the melanoma progression [74-75]-may induce a
MAPK-independent tumour growth [76]. Inactivation of AKT by
targeting PI3K has been also demonstrated to effectively inhibit cell
proliferation [58,77]. The combination of a BRAF or MEK inhibitor
with a PI3K/mTOR inhibitor was found to enhance cell growth
inhibition through achievement of ERK hypophosphorylation,
reduced Cyclin D1 levels and increased p27 levels, overcoming the
resistance encountered by the use of a single anti-BRAF or anti-MEK
agent [44,78]. Amplification of Cyclin D1, allelic deletions down-
regulating p16CDKN2A, and alterations inactivating PTEN have been
all associated with a poorer progression-free survival following
treatment with dabrafenib in patients with BRAF-mutant metastatic
melanoma [79].

The protein encoded by the NF1 gene, neurofibromin, is a known
tumour suppressor gene and negative regulator of RAS protein.
Therefore, loss of NF1 mediates resistance to RAF and MEK inhibitors

trough sustained MAPK pathway activation [59]. Recent studies have
shown how NF1 ablation decreases the sensitivity to BRAF inhibitors
in BRAF mutant melanoma cells that are intrinsically resistant to
BRAF inactivation as well as in melanomas developing resistance to
vemurafenib [59,80].

Finally, activation of PRKD3 (protein kinase D3) contribute to
resistance to such target therapies by direct stimulating the PI3K-AKT
pathway. Inhibition of this gene has been reported to enhance cell
growth arrest by BRAF and MEK inhibitors and enforce cell sensitivity
to these agents [60]. The NF1 loss and the PRKD3 activation can be
considered as key mediators of both acquired and intrinsic BRAF
inhibitor resistance (increased activity of PRKD3 seems to however
confer resistance to RAF265 rather than approved BRAF inhibitors
[60]).

Acquired resistance
Although very encouraging, the clinical responses to BRAF

inhibitors are relatively short-lived and resistance to treatment
develops in 6 to 8 months from the initiation of therapy, with
treatment failure and tumour progression occurring in nearly every
case. In contrast with several studies that shown how acquired drug
resistance was associated with the acquisition of secondary mutations
in kinase being targeted that prevented the binding of drug (for
example T790M in the EGR receptor [81] and T315I in Bcr-ABL [82]),
secondary BRAF mutations were not the mechanism of resistance in
melanomas patients [40]. The emerging data instead suggest that a
diverse array of BRAF inhibitor acquired resistance mechanisms exists
and they are highly heterogeneous [83].

At a glance, two different pathogenetic scenarios of acquired
resistance may be depicted (Figure 1).

The first scenario include mechanisms underlying reactivation of
the RAS/RAS/MEK/ERK pathway trough induced alterations in
components of this signalling cascade: activation of RAS signalling
[84], activating mutations in MAP2K1 (encoding MEK1 protein) or
MAP2K2 (encoding MEK2 protein) genes [85,86], activation of
MAPK pathway agonists such as COT kinase [87], occurrence of
alternative splicing of the BRAF mutant mRNA [88], BRAF-mutated
gene amplification [89]. In this case, the cell proliferation/tumour
growth is still depending on RAS/BRAF/MEK/ERK cascade activity
and BRAF inhibition is overcome with alternative changes within this
same pathway (real failure of BRAF inhibitors).

The second scenario is represented by reactivation of the
suppressed ERK signalling through induced alterations in components
of cell proliferation-controlling pathways different from the
BRAF/MEK/ERK cascade: up-regulation of the receptor tyrosine
kinase (RTK) effectors-such as the platelet-derived growth factor
receptor β (PDGFR β) [90], activation of the MET-HGF system [91],
amplification of the CCND1/Cyclin D1 gene or lack of PTEN function
with subsequent activation of the PI3K-AKT pathway [62],
enhancement of the IGF-1R/PI3K signalling [92], up-regulation of the
signal transducer and activator of transcription 3 (STAT 3)-paired box
homeotic gene 3 (PAX 3)-signalling pathway [93-95]. In this case,
BRAF inhibition is still effective, but the tumour is not anymore
dependent upon RAF/MEK/ERK signalling for growth and survival
(paradoxical failure of BRAF inhibitors).

As largely known, in melanoma with mutated BRAF, activation of
the downstream MEK/ERK pathway is independent on the RAS-
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ligand activity and BRAF mutant transmits continuous proliferation
signals acting as a RAF-inhibitor-sensitive monomer. Vemurafenib
and dabrafenib potently inhibit such BRAF mutant monomers,
causing markedly decreased levels of ERK phosphorylation [94]. As a
consequence, the ERK-dependent feedback is progressively turned off,
RAS-driven signal transduction is restored with increasing levels of
active RAS-GTP, and RAF-inhibitor-resistant RAF dimers are
generated. The RAF homo- or heterodimers (CRAF-CRAF, BRAF
mutant-CRAF) are able to reactivate the MEK/ERK pathway with a
consequent increased activity of the ERK 1/2 proteins [90-96]. In
preclinical models, increased activity was firstly identified in drug-
resistant clones derived from cell line undergoing BRAF-inhibition
[97]. Occurrence of CRAF mutations has been to also contribute in
reactivating the MEK-ERK axis - again, in a dimerization-dependent
manner-following exposure to RAF inhibitors [98]. Enhanced RAS-
dependent RAF dimerization has also been involved into the
pathogenesis of squamous cell carcinomas, as a side effect in subsets of
patients treated with RAF inhibitors [99,100]. These agents have been
demonstrated to indeed activate MAPK pathway by inducing RAF
dimerization in cells lacking BRAF mutations [38,40,88,102], leading
to increased keratinocyte proliferation. Enhanced RAF dimerization is
also promoted by alteration such as NRAS mutations: a genetic
analysis of biopsies from patients resistant to vemurafenib revealed the
presence of an activating NRAS mutation (Q 61) that was lacking in
the original tumours. This switch in mutational status was
accompanied by the reactivation of MAPK pathway after treatment
with vemurafenib [40]. Mutations in any of the three isoforms of RAS
(with preponderance of those occurring in HRAS gene) may also
contribute to the development of squamous cell carcinomas as adverse
event during the treatment with BRAF inhibitors [5,40].

Another mechanism that drives formation of RAF dimers, with
consequent RAF inhibitor resistance, consists in upstream activation
of receptor tyrosine kinase (RTK) MET via hepatocyte growth factor
(HGF), which is its main ligand [91,103-104]. Several studies has
shown how HGF, overexpressed by stromal cells of the tumour
microenvironment, stimulates MET receptor promoting transduction
of the signal to the downstream PI3K effector with subsequent
enhancement of AKT activity [104,105]. The HGF-MET axis plays a
critical role in both intrinsic and acquired resistance to BRAF
inhibition; the addiction of either an inhibitor of HGF or MET
simultaneously to BRAF inhibitor re-establishes sensitivity to BRAF
inhibition [91]. To investigate if additional pathways were stimulated
in response to chronic BRAF inhibition, the activation of several
tyrosine kinase receptors (RTKs) are being examined; among them,
insulin like growth factor receptor-1 (IGF-1R) has been identified as
being constitutively activated in resistant cells [92]. IGF-1R can
activate both the MAPK and PI3K pathways: IGF-1R signalling
cooperate with MAPK pathway in regulating progression from benign
nevi to malignant melanoma through sustainment of cell survival and
dissemination and increase of IGF-1R expression reflects an enhanced
activity of PI3K/AKT [92,106]. All these clues suggest the possible
existence of a negative crosstalk between the two pathways during
chronic BRAF inhibition. Crosstalk between MAPK and PI3K has
been reported in several cancer systems, but not much is known in
melanoma [107,108]. Interruption of IGF-1R signalling has been
shown to inhibit tumour growth and block metastasis formation in a
wide variety of tumour models and dual inhibition of IGF-1R and
MEK inhibitors has been demonstrated to induce growth arrest in
BRAF inhibitor-resistant cells [92]. Acquired resistance to BRAF and
MEK inhibitors resistance seems to be associated with the up-

regulated expression of other RTKs such as PDGFR β−receptor
(platelet derived growth factor receptor): its increased expression, in
BRAF-inhibitor resistant cellular models, was demonstrated to be
responsible for improving cell survival and invasiveness in a manner
independent on the activation of the MAPK pathway [40]. In presence
of BRAF or MEK inhibitors, IFG-1R and PDGFRβ signalling has been
shown to overexpress the STAT3 (transcriptional activation factor)
with consequent activation of STAT3 pathway through stimulation of
the Src/FAK transducers [94,109-111]. STAT 3 acts as a direct
transactivator of the PAX3 promoter implicated in activating
expression of the receptor tyrosine kinase MET in melanoma [112].
The importance of the STAT3-PAX3 signalling axis has been
highlighted through knockdown experiments; indeed, knocking down
either STAT3 or PAX3 in vemurafenib resistant BRAF mutated
melanoma cells reduced cancer proliferation [93]. Conversely,
upregulation of STAT 3 allows cells to become independent on the
activity of the BRAF-MEK pathway and contribute to resistance to
BRAF and MEK inhibitors [93-94,113]. Nearly all results about the
role of the RTK effectors in resistance to such targeted treatments have
been obtained in studies on melanoma cell lines; therefore, significant
data from analysis of clinical samples are not yet available.

Through a functional genomics approach, expression of COT
kinase was also identified as a putative mechanism of RAF inhibitor
resistance: a number of melanoma cells lines and tissues showed a
genomic amplification of COT associated with intrinsic BRAF and
MEK inhibitor resistance [87]. The overexpression of the COT kinase,
which is encoded by the MAP3K8 gene, is induced by the treatment
with BRAF or MEK inhibitors acting as an agonist of the MAPK
pathway and leading to resistance to BRAF-MEK inhibition [87]. The
identification of COT is an example of an inhibitory bypass
mechanism that results in reactivation of ERK signalling in a RAF-
independent manner. However, the relevance of increased COT
expression in the resistant phenotype was mainly evidenced in
experimental sets but poorly confirmed in patients failing BRAF and
MEK inhibitor treatment. Downstream mutations in MAP2K1
(encoding MEK1 protein) and MAP2K2 (encoding MEK 2 protein)
genes have also been reported as resistance drivers to BRAF or MEK
inhibitors [115]. Specially the MEK1 P124L and Q56P specific
mutations have been shown to modify the allosteric pocket of MEK1,
making MEK1 protein either independent on stimulation by upstream
BRAF either insensitive to MEK inhibitors [85]. Further study have
shown how other MEK1 mutants (e.g. P142S and I111S) respond to
BRAF inhibitor treatment, suggesting that not all MEK1 mutations
make BRAF–mutant melanomas resistant to BRAF inhibitors [115].

While secondary mutations in BRAF have not been identified as a
cause of BRAF or MEK inhibitor resistance (see above), several studies
identified selective amplification of the mutant BRAF allele as the
mechanism underlying acquired resistance [116-118]. Gene mutations
and copy number gains may occur independently of each other, since
are determined from different pathogenetic mechanism: alterations
affecting the molecular machinery that monitors the proper
progression of the cell cycle seem to be responsible for the presence of
gross genomic anomalies during the malignant progression (indeed,
copy number gains are often the consequence of random genomic
instability), whereas mutations usually occur in diploid karyotypes
with few structural abnormalities during the initial phases of evolution
of malignancies [119]. However, in some cases, gene amplifications
tend to occur in the same cancers presenting oncogenic mutations, as
reported for EGFR in NSCLC or BRAF in colorectal carcinoma
[120-121]. Recent elegant study has shown how melanoma cells

Citation: Colombino M, Sini MC, Lissia A, Cossu A, Palmieri G (2014) Targeted Therapies in Melanoma: Knowledge, Resistance and
Perspectives. J Carcinog Mutagen S4: 004. doi:10.4172/2157-2518.S4-004

Page 7 of 12

J Carcinog Mutagen Skin Cancer ISSN:2157-2518 JCM, an open access



chronically exposed to trametinib acquired concurrent MEK2-Q60P
mutation and BRAF-V600E amplification, which conferred resistance
to MEK and BRAF inhibitors [122].

A peculiar, qualitative mechanism of resistance is represented by
the intracellular accumulation of a splice variant of the mutated BRAF
mRNA. A subset of melanoma cells resistant to BRAF inhibitors
express a truncated form of BRAFV600E, p61BRAFV600E, that lacks
the RAS-binding domain but retain the kinase domain [88]. These
BRAF splice variants dimerize in a RAS-independent manner,
consistent with the model that only BRAF V600E monomers are
sensitive to inhibition. The final effect of such an alteration is a trans-
activation of the MEK-ERK pathways, with ERK signalling being
resistant to the RAF inhibitors [41,88]. Moreover, the vemurafenib-
resistant melanomas presenting an enhanced transcription and
translation of the mutated BRAF kinase may develop a drug
dependency for their continued proliferation, such that cessation of
BRAF inhibitor administration may lead to regression of non-lethal
drug-resistant tumours [123]. This evidence has suggested that a
discontinued treatment with these agents may somehow prevent the
emergence of lethal drug-resistant cell clones [123]. Although BRAF
splice variants were not detected in vemurafenib-naïve patients with
cancer, it is possible that they are expressed in a small subpopulation
of cells within the pre-treatment tumour and that exposure to BRAF
inhibitors provides a selective pressure for the propagation of the
BRAF splice variant–expressing tumor population. More in general,
since major genetic alterations (i.e. mutations in BRAF and NRAS) are
maintained during melanoma progression [124,125], one could
speculate that resistance to targeted therapies are likely due to the
presence of resistant sub-clones within the primary tumors which may
be induced to proliferate and expand themselves after the initiation of
inhibitory therapy (Figure 2). On this regard, much debate however
exists in regard to the “selection” or “acquisition” of molecular
alterations conferring resistance to targeted therapies in different types
of cancers. The fact that in rare instances the resistance alterations
have been identified in biopsy specimens of treatment-naive patients
using standard screening techniques could be indeed imputed to either
the true initial absence of them or the poor sensitivity of the current
analytical methods in identifying the very limited fraction of tumor
cells with such under-represented alterations. Further supporting the
hypothesis about the prevalence of the “selection” model of resistance
alterations, a growing number of studies are suggesting that the
inherent phenotypic and genetic heterogeneity of cancer cell
populations in primary tumours represent a critical determinant of
drug resistance [126,127].

Figure 2: Model of tumor drug resistance. Due to molecular
heterogeneity of melanoma, after exposure to target inhibitors, the
drug-resistant cells survive and proliferate, giving rise to a tumor
made up of the progeny of the drug-resistant cells.

Future Perspectives
Although the resistance mechanisms identified so far are multiple,

it is evident that a crucial role in determining such a phenomenon is
played by the increased activity of ERK or AKT signalling. As seen
above it is possible that reactivation of ERK or AKT survival pathways-
as a result of aberrations in regulators of BRAF activity-may replace
the tumor’s initial oncogene addition. This may complicate the
outcome of the targeted therapy since the BRAF-mutant melanomas
may no longer be responsive to treatment with a single BRAF
inhibitor. In support of this, activation of the ERK1/2 proteins and,
therefore, of the ERK-dependent nuclear transcription has been largely
reported to significantly drive either the development of an acquired
drug resistance or the occurrence of most of the side effects in
melanoma patients. In preclinical models, a selective, ATP-
competitive inhibitor of ERK1/2 kinases has been described to resume
growth suppression in melanoma cells whose resistance was
determined by ERK reactivation [128].

The activation of multiple signaling pathways by many genes
illustrates the need for the targeting of more than one signaling
pathway. In most cases, the addition of a compound directed against
one of these latter activated effectors to the treatment with a targeted
agent may contribute to overcome resistance to single inhibitors as
demonstrated by discovery that new RAF inhibitor are able to both
inhibit ERK activity and protect ERK1/2 kinases from NRAS-driven
reactivation in vemurafenib-resistant cells [129]. The addition of a
MEK inhibitor to the RAF inhibitor seem to increase the magnitude
and/or durability of response, as shown in several studies
[37,47,48,130,131].

As inferred by studies on RAF inhibitor resistance, another rational
strategy could be represented by a combination of inhibitors co-
targeting components of the PI3K-AKT pathway; pre-clinical data
seem to suggest that such a treatment may become a winning
therapeutic strategy to exert an effective antitumor outcome in
melanoma patients. In this sense, combined treatment based on
inhibition of BRAF and silencing of AKT3 was found to significantly
increase suppression of tumour growth as compared to the result
obtained by single agent administration [78,132,133]. In in vivo
melanoma models, the synergistic use of MEK and PI3K inhibitors is
more potent and more effective in overcoming antitumor resistance
[134,135], as also confirmed by a study where the clinical relevance of
the dual-targeting strategy involving MEK and PI3K inhibitors was
evaluated in patients with advanced cancer [136]. Similarly, the
combination of MEK inhibitors with agents inhibiting mTOR, the
downstream effector of the PI3K-AKT pathway, has been reported to
exert an effective antitumor response inhibiting tumor growth,
inducing cell death, and abrogating invasiveness of melanoma cells.
[44,137,138]. Taken together these results indicate that combinations
of inhibitors as PI3K (upstream) or mTOR (downstream) suppressed
AKT activity and enhance the antitumor effectiveness of the MAPK-
targeted therapies.

The existence of so many potential resistance mechanisms requires
complex patient-specific approaches to either more accurately classify
from the molecular point of view all cases to be addressed to targeted
therapies either develop new combinational treatment with multiple
gene inhibitors that may help in overcoming toxicities and resistance.
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