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Abstract
Four populations of Culex pipiens were collected as larvae in Northern Tunisia to evaluate their resistance status 

against two insecticides: fenitrothion and propoxur. At LC50, the sample # 1 was susceptible, whereas all the other 
samples were resistant. The RR50 ranged from 1.08 in sample # 1 to 550 in sample # 3. The A2-B2, A4-B4 (and/or A5-
B5), B12 and C1 esterases were found in collected samples and the frequencies ranged from 0.02 to 0.42. Propoxur 
caused a mortality of 0% in samples # 3 which showed the highest resistance levels to fenitrothion insecticide and 
87% in sample # 1 which was susceptible hence the involvement of AChE 1 in the recorded resistance. Our results are 
essential for the development of such strategies of vector control.
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Introduction
Formerly, insect populations resistant to pesticides were controlled 

either by increasing the quantity of product used, either by applying new 
active ingredients. Both strategies are now over. The use of increasing 
amounts of insecticides is a danger to the environment and is very 
costly; moreover, the discovery and development of new insecticides 
is clearly decreasing. There are thus few alternatives to control insects 
such as Culex pipiens which are resistant to insecticides, whether 
organophosphates, carbamates or pyrethroids [1-10]. Fenitrothion 
is one of the most popular organophosphorus (OP) insecticides used 
worldwide, which inhibits arthropod [11].

All of these considerations prompt urgent action, based on the 
development of appropriate strategies for the use of pesticides. Data 
inherent to insecticides, their toxicity and their interactions with 
arthropod action sites, to the knowledge of biochemical resistance 
mechanisms, are essential for the development of such strategies. It is in 
this context that this document is inscribed. We reported in this paper 
a study on fenitrothion resistance of Culex pipiens populations collected 
in four breeding sites of Northern Tunisia (Figure 1 and Table 1).

Materials and Methods
Mosquito strains 

Four populations of Culex pipiens were collected as larvae and 
pupae in Northern Tunisia between August 2003 and October 2005. 
Collected samples were reared in the laboratory for further bioassays. 
Three strains were used as references: S-Lab was a sensitive strain, 
SA2, and SA5 were resistant strains with A2-B2 and A5-B5 esterases, 
respectively. 

Insecticides 

Assays were performed using two insecticides: fenitrothion 
(98.5% [AI]), brought from laboratory Dr Ehrenstorfer, Germany), 
and propoxur (99.9% [AI], Bayer AG, Leverkusen, Germany), 
organophosphates and carbamates compounds, respectively. We used 
two synergists in order to detect detoxification enzymes involved in 
resistance: S, S, S {ributyl phosphorothioate (DEF), an esterase inhibitor, 
and piperonyl butoxide (pb), an inhibitor of mixed function oxidases. 

Bioassay procedures and data analysis 

Bioassays were realized on late third and early fourth instar larvae 
according to procedures of WHO [12]. Results were analysed for the 

median lethal concentration (LD50) and LD95 by probit analysis using 
a Basic program [13].

Esterase’s detection 

Esterase phenotypes were established by starch electrophoresis 
(TME 7.4 buffer system) as described by Pasteur et al. [14,15] using 
homogenates of thorax and abdomen.

Figure 1: Geographic origin of Tunisian populations.
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Results 
Fenitrothion resistance

The linearity of the dose-mortality response was accepted (p<0.05) 
for S-Lab and field samples # 3. At LC50, the sample # 1 was susceptible, 
whereas all the other samples were resistant (Table 2). The RR50 ranged 
from 1.08 in sample # 1 to 550 in sample # 3. High resistance levels were 
manifested by sample # 3 (>500 folds). The samples # 1 and 2 showed 
low resistance levels, not exceeding 10-fold. At LC95, RR95>100 in 
samples # 3 and 4.

The addition of DEF to fenitrothion bioassays decreased significantly 
the tolerance in S-Lab (SR50=2.5, p<0.05) and sample # 4 (Table 2). 
The SR was not significantly higher than that recorded in S-Lab in all 
samples. These results indicate that the increased detoxification by the 
EST (and/or GST) did not play any role in the resistance. The Pb had 
not a significant effect on the fenitrothion resistance in S-Lab (SR50 = 
1.16, p<0.05). The resistance decreased significantly in sample # 4, but 
the SR50 was not significantly higher than that recorded in S-Lab in any 
samples (Table 2). These mechanisms did not account any portion of 
the fenitrothion resistance for all samples.

Cross-resistance of fenitrothion/propoxur

Propoxur caused a mortality of 0% in samples # 3 which showed 
the highest resistance levels to fenitrothion insecticide. The highest 
percentage of mortality was recorded in sample # 1 (87%) which 
showed a susceptibility to fenitrothion. Mortalities due to propoxur 
were 39% and 68% in resistant samples # 2 and 4, respectively. A strong 
correlation were found between mortality due to propoxur and the 
LC50 of fenitrothion (Spearman rank correlation, (r) = 0.69 (P<0.01)). 

Esterase’s activities

The A2-B2, A4-B4 (and/or A5-B5), B12, and C1 esterases were 
found in collected samples and the frequencies ranged from 0.02 to 
0.42. The A1 esterase was not detected in any used sample.

Discussion
Our study on resistance of Culex pipiens to fenitrothion showed 

high levels compared to other studies on different mosquitoes in the 
world [16-18]. In addition to the treatments carried out in vector 
control, arthropod vectors are also subjected, depending on their 
ecology, to the insecticidal pressure resulting from agriculture or 
domestic uses, thus accelerating the appearance of the phenomenon 
and the spread of resistant alleles in the vector populations, resulting in 
a loss of effectiveness of the treatments.

Fenitrothion is one of the most popular organophosphorus 
insecticides used worldwide [11]. Intensive insecticide applications 
often result in accelerated biodegradation of the insecticide in the 
environment [19-21]. Many studies confirmed drastic increase 
of fenitrothion-degrading Pseudomonas, Flavobacterium, and 
Burkholderia in agricultural field soils [22-24].

Our synergist study showed that the increased detoxification by 
EST (and/or GST) and oxydases were not involved in the recorded 
resistance. Starch electrophoresis detected many esterases in all studied 
samples. This confirms the hypothesis that somes esterases, GSTs, and 
cytochrome P450 enzymes may be insensitive to the action of DEF 
and Pb. The involvement of EST and the GST in the OPs resistance 
was confirmed by many previous studies [2,3,25-32]. Our study 
is in agreement with previous publication on correlation between 
cytochrome P450 enzymes and resistance to pyrethroids [33].

We also showed that the resistance to the studied OP was correlated 
with the propoxur resistance hence the involvement of AChE 1, where 
mutations changed the sensitivity of AChE, in the recorded resistance. 
Our results were in agreement with many previous studies that have 
shown the role offered by the resistant allele, Ace-1, in many areas of 
the world [34-37].

Acknowledgements

This work was kindly supported by the Ministry of Higher Education and 

Code Locality Breeding site Date of collection Mosquito control (used insecticides) Agricultural pest control
    1 Krib River 0ct. 2005 Occasional (P) Yes
    2 Belli River Aug. 2003 Rare (C,D) Yes
    3 Tazarka River May 2005 Very frequent (C, T, Pm, F, P, D) Yes
    4 Sidi khalifa Water pond July 2004 None None

C : Chlorpyrifos ; T : Temephos ; Pm : Pirimiphos methyl ; F : Fenitrithion ; P : Permethrin ; D : Deltamethrin

Table 1: Geographic origin of Tunisian populations, breeding site characteristics and insecticide control.

Population
Fenitrothion Fenitrothion +DEF Fenitrothion +Pb

LC50 in µg/l 
(a)

Slope ± 
SE RR50 (a) LC50 in 

µg/l (a)
Slope ± 

SE
RR50
(a)

SR50
(a)

RSR LC50  in µg/l
(a)

Slope
± SE

RR50
(a)

SR50
(a)

RSR

S-Lab 3.3 (1.7-6.3) 3.19 ± 
0.94 - 1.3 (1.0-

1.6)
2.43 ± 
0.26 - 2.5

(1.2-5.2) - 2.8
(0.18-44)

1.44
  ± 0.93 - 1.1

(0.34-3.9) -

Krib 3.6 (1.9-6.6) 2.36 ± 
0.52

1.08 (0.47-
2.4) - - - - - - - - - -

Belli 8.7 (5.0-14) 1.13 ± 
0.15 2.6 (1.3-5.1) 7.5 (3.2 - 

17)
0.94 ± 
0.19

5.6
(3.7-8.4)

1.1
(0.78-1.7) 0.46 14

(9.8-20)
1.58*
  ± 0.2

4.9
(1.9-12.5)

0.61
(0.43-
0.84)

0.52

Tazarka 1840 (1710-
1980)

6.38  ± 
0.61

550 (241-
1250)

1990 
(1790-
2220)

3.52 ± 
0.25

1497
(1140-1965)

0.92
(0.71-1.1) 0.37 1040

(953-1130)
4.55

  ± 0.35
360

(119-1087)
1.7

(1 .3-2.3) 1.5

Sidi khalifa 126 (74-215) 1.43 ± 
0.21

37.7 (18.6-
76.5)

26 (8.0-
51)

0.71 ± 
0.17

19.8
(14.3-27.4)

4.7
(3.1-7.2) 1.9 37

(26-54)
1.56*

 ± 0.24
13.0

(4.2-40.3)
3.3

(2.2-5.0) 2.9

(a), 95% CI;  * The log dose-probit mortality responses is parallel to that of  S-Lab.
RR50, resistance ratio at LC50 (RR50=LC50 of the population considered / LC50 of Slab); SR50, synergism ratio (LC50 observed in absence of synergist / LC50 observed in 
presence of synergist). RR and SR considered significant (P<0.05) if their 95%CI did not include the value 1.
RSR, relative synergism ratio (RR for insecticide alone / RR for insecticide plus synergist).

Table 2: Fenitrothion resistance characteristics of Tunisian Culex pipiens in presence and absence of synergists DEF and Pb.
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