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Dysfunctional Menstrual Cycles – Menorrhagia and 
Dysmenorrhea

Primary menorrhagia represents dysfunctional menstrual bleeding 
with a menstrual loss in excess of 80 millilitres per cycle, in the absence 
of abnormal uterine pathology. This condition affects between 10-30% 
of reproductive aged women [1]. Similar to primary menorrhagia, no 
identifiable uterine abnormality is detected in women with primary 
dysmenorrhea. Primary dysmenorrhea is characterized by painful 
menstrual cramps as a result of abnormal uterine contractility [2]. 
Reduced blood flow due to ischemia is correlated with more severe 
pain. Together, these conditions affect up to 50% of women during 
reproductive life and result in significant morbidity, incapacitation and 
lost work days in some 10% of sufferers. Half of all women who have a 
hysterectomy for menorrhagia before age 60 years have an anatomically 
normal uterus [3].

Steroid Hormones and the Menstrual Cycle
Cyclic tissue remodelling in the endometrium occurs under the 

influence of fluctuating levels of the ovarian steroid hormones estradiol 
and progesterone [4,5] (Figure 1). Steroid receptors for estrogens, 
progestins and androgens have been reported to fluctuate throughout 
the menstrual cycle. The ovarian steroid hormones modulate the 
ability of each to respond to the other and other hormone–dependent 
factors [6]. Both estrogen and progestin receptors peak during the 
second half of the proliferative phase of the cycle, and decline during 
the secretory phase of the cycle in response to progesterone, though to 
varying degrees for each isoform [7-10]. Androgen receptor expression 
decreases from the proliferative until the mid-secretory phase and is 
undetectable by the late secretory phase [11].

Menstrual phase

The menstrual phase of the cycle is characterized by progesterone 
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withdrawal. The endometrial response to progesterone withdrawal 
preceding menstruation involves mediators of apoptosis, haemostasis 
and wound healing. An influx of inflammatory cells into the 
endometrium occurs prior to menstruation. 

Prostaglandins are key mediators in menstrual cycle processes 
[12]. Prostaglandins are regulated by progesterone, and are implicated 
in menstruation [13]. Prostaglandins promote uterine contraction, 
and vasoconstriction leading to hypoxia, ischemia and pain [14]. 
Prostaglandins are eicosanoid cyclooxygenase (COX) metabolites 
of arachidonic acid, promoting angiogenesis by binding to specific 
cell receptors. Dysregulation in biosynthesis or signalling of the 
prostaglandin receptors can result in abnormal vasculature leading 
to dysfunctional uterine bleeding. COX-2 is up-regulated during the 
peri-menstrual period [15]. Matrix metalloproteases (MMPs) have 
been implicated in the irreversible tissue breakdown associated with 
menstruation in response to progesterone withdrawal during the pre-
menstrual period [16]. 

Proliferative phase

Estrogen dominance results in significant changes in growth factor 
secretions and endometrial regeneration causing increased endometrial 
height. Estradiol stimulates the expression of epidermal growth factor 
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(EGF) and insulin-like growth factor (IGF), factors promoting cell 
division, differentiation and estradiol-induced endometrial growth 
[17,18].

Secretory phase

The secretory phase of the menstrual cycle is characterized 
by progesterone dominance. Proliferation ceases and endometrial 
differentiation occurs, however the endometrial height is fixed due to 
growth inhibition by progesterone interference with estrogen receptor 
expression [19,20]. Progesterone levels peak in the estrogen primed 
endometrium resulting in increased inflammatory cell infiltrates and 
commencement of decidualization.

Steroid Hormones and Immunity
Mucosal immunity within the female genital tract is also regulated 

by the steroid hormones. Cyclic changes in estradiol and progesterone 
concentrations result in controlled recruitment of immune cell 
populations, antigen presentation and cytokine secretion [6]. The 
steroid hormones influence both the innate and the adaptive immune 
responses, contributing to the immediate non-specific response to 
pathogen associated molecular patterns (PAMPs) and the specific 
but delayed humoral and cell mediated antigen presentation in 
adaptive immunity [21]. Estrogens enhance the humoral immune 
response whereas progesterones suppress the proliferative capacity of 
lymphocytes within the endometrium; increasing infection risk [22-24] 
Androgens inhibit both cell-mediated and humoral immunity.

Estradiol attenuates inflammation and modulates the immune 
response [25]. Previous studies revealed that estradiol causes inhibition 
of lipopolysaccharide (LPS) mediated interleukin (IL)-6 secretions in 
uterine epithelial cells [21,26]. Estradiol and progesterone both inhibit 
LPS-mediated prostaglandin production in endometrial cells, further 
highlighting the role of the ovarian steroid hormones in infection 
sequelae [24]. 

Mediators of the Innate Immune System Respond to 
Menstrual Cycle Steroid Hormone Fluctuations

The composition of the genital tract epithelium, the secretion of 
mucus and the localized immune response follow a similar pattern 
of hormonal dependence [27-30]. Importantly, there appears to be a 
relationship between innate immune mediators and endogenous stress 
response proteins in the development of pelvic inflammation [31].

Human uterine epithelial cells express Toll-like receptors (TLR) 
1-9 [32,33]. TLRs interact with specific PAMPs, and receptor binding 
results in the up-regulation of a pro-inflammatory cytokine cascade 
and cellular activation [34,35]. Cell surface TLRs (TLR 1,2,4,5,6) 
recognize microbial products and endogenous ligands while 
intracellular TLRs (TLR3,7,8,9) recognize nucleic acids [36,37] (Table 
1). Therefore, inflammation can be initiated under infectious and non-
infectious conditions via TLR activation. Pro-inflammatory cytokines 
and chemokines are expressed in response to TLR ligand binding in 
quantitatively and temporally specific patterns [38,39]. Many of these 
chemical mediators are tightly regulated throughout the menstrual 
cycle, therefore, changes in secretion induced by TLR activation 
may well impact on endometrial function in susceptible women 
[32]. Despite varying patterns of expression for individual immune 
mediators throughout the menstrual cycle, the cycle-specific changes 
in immune mediator expression capitulates in the endometrium during 
the late secretory to early proliferative phase of the cycle [40,41].

There are distinct cell and site-specific differences in TLR expression 
throughout the female reproductive tract [42]. TLR-2 and TLR-4 are 
predominantly expressed in the female upper reproductive tract, but 
rarely in the lower reproductive tract [43-45]. In contrast to all other 
epithelia, TLR-4 is expressed at much higher levels than TLR-3 within 
the endometrium possibly due to redundancy between TLR-3, TLR-4 
and dsRNA binding proteins [38,46]. 

 Figure 1: Menstrual cycle phase and immune mediators respond to estradiol and progesterone in a coordinated manner.
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Recently, TLR-4 activation by commensal Gram-negative genital 
tract bacteria (E. coli, Veillonella parvula and Neisseria mucosa) was 
shown to inhibit human immunodeficiency virus (HIV)-1 macrophage 
infection in vitro [47]. In contrast, TLR-2 activation by Gram-
positive bacteria including lactobacilli enhanced HIV-1 infection of 
macrophages. The capacity for commensal bacteria to alter the immune 
response to a potential pathogen via PAMP recognition by TLRs 
highlights the potential impact of dysbiosis within the commensal 
microbiota on reproductive health outcomes.

TLRs can also be activated by endogenous ligands (damage 
associated molecular patterns, DAMPs), which are released from 
damaged cells during tissue inflammation and injury [48]. Hyaluronic 
acid and biglycan bind to, and activate, TLR-2 and/or TLR-4 and heparin 
sulphate, fibrinogen, fibronectin [48]. Heat sock proteins activate TLR-
4 [48,49]. Fibronectin is released by endometrial cells in response to 
progesterone [50]. The activated TLRs then activate macrophages to 
produce inflammatory chemokines and cytokines [33]. Activation 
of TLR-2 and TLR-4 by microbial pathogens  activates pathways 
involved in inflammation, tissue repair and adaptive immunity, whilst 
endogenous ligands binding TLRs -2 and -4 induce inflammation and 
tissue repair processes [48]. It is proposed that chronic inflammation, 
which leads to elevated levels of endogenous TLR ligands causes an 
accumulation of DAMPs thereby lowering the threshold of cellular 

responsiveness to PAMPs [51]. The net result of which is likely to be 
ongoing, acute inflammation.

Some bacteria (E. coli, Streptococcus sp., Pasteurella sp., Neisseria 
meningitidis) avoid the host immune response through molecular 
mimicry of host glycan structures (heparan sulphate, hyaluronic acid, 
biglycan) or by altering the cell surface domains releasing charged 
moieties, which then bind the secreted endogenous antimicrobials 
such as defensins and lysozyme to neutralize the innate host response. 
Bacterial species including Streptococcus agalactiae, Neisseria sp. 
Pseudomonas aeruginosa and Haemophilus sp. appear to promote the 
cell surface expression of specific glycans and sialic acids in a commensal 
role to avoid activating the innate immune response [52-55].

Secretory immunoglobulin levels also fluctuate throughout the 
menstrual cycle in response to the steroid hormones. Secretion is 
highest during the secretory phase of the cycle, significantly reduced 
during the proliferative phase and even further reduced at the time of 
menstruation [56]. 

The endogenous antimicrobials in the female upper genital tract 
are capable of inducing cell proliferation, chemotaxis and cytokine 
secretion. Secretory antimicrobials from the upper genital tract tissues 
demonstrate selective toxicity against sexually transmitted pathogens, 
when tested against lower genital tract pathogens and the commensal 

Toll-like 
receptor Endogenous ligands Exogenous ligands Cell localization Genital tract expression

1 Lipopeptides
Modulin Cell surface Decidual cells

Endometrial epithelial cells

2

Biglycan
Endoplasmin

Hsp60
Hyaluronan

Monosodium urate crystals
Veriscan

Lipopolysaccharide (LPS)
Lipoproteins
Lipoproteins

Lipotechoic acid (LTA)
Mannuronic acid polymers

Modulin
Peptidoglycan

Zymosan

Cell surface

Natural killer cells

3 mRNA Vrial dsDNA Intracellular

4

Biglycan
CD138

Endoplasmin
Fibrinogen
Fibronectin

Heparan sulphate
HMGB1
HSP22
Hsp60
HSP60
Hsp70
HSP70
HSP72

Hyaluronan
Monosodium urate crystals

Oxpapc
Resistin

Surfactant protein A
α-crystallin A chain

β-defensin 2

LPS
Mannuronic acid polymers Cell surface

5 Flagellin Cell surface

6 Veriscan Lipoprotein
Modulin Cell surface

7 RNA
Small interfering RNA (siRNA) Viral ssRNa Intracellular

8 Human cardiac myosin
siRNA Viral ssRNA Intracellular

9 DNA
HMGB1 Unmethylated CpG-DNA Intracellular

Table 1: Toll-like receptor ligands.
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organism Lactobacillus crispatus [57]. It has been postulated that the 
microbial cell wall and cell membrane composition may be the reason 
for differential activity against pathogens [58]. The ovarian steroid 
hormones produce differential effects on the expression levels of 
endogenous antimicrobials between the upper and the lower genital 
tract sites [26,59]. The role of immune response or surveillance in the 
presence of an endometrial-specific endogenous microbiota has not 
yet been explored. The upper and lower genital tract sites function in 
a coordinated but separate fashion, highlighting the need to further 
investigate the role of the upper genital tract microbiota in susceptibility 
to infection [60].

Menstrual phase

Menstruation involves a breach in the epithelial lining, which 
may elicit an up-regulation of immune mediators to prevent infection 
[61-63]. Decreases in estradiol and progesterone levels correlate with 
changes in the genital tract microbiota. Many antimicrobial peptides 
including human beta defensins (HBD), elafin and secretory leukocyte 
protease inhibitor (SPLI) are over expressed in the peri-menstrual 
epithelium [4]. Elafin is also expressed during menstruation [63]. 
HBD2 levels peak during the menstrual phase of the cycle [59,64].

Proliferative phase

Elevated estradiol levels during the proliferative phase of the 
menstrual cycle result in suppression of innate immunity and the 
resultant secretion of endogenous antimicrobials. HBD4 levels peak 
during the proliferative phase of the cycle indicating that there is some 
level of innate immune response at this stage [65]. However, whilst 
HBD4 is chemotactic for monocytes, it has no effect on neutrophils 
or eosinophils [66]. This may provide some insight into the increased 
diagnosis of genital tract infection during the proliferative phase of the 
menstrual cycle. 

Secretory phase

Several natural antimicrobials including HBD and SLPI are also 
maximally expressed during the secretory phase of the cycle [67,68]. 
HBD1, 2, 3 and 5 levels and SLPI levels peak during the second half of 
the menstrual cycle [59,64].TLR-2-6, and 9 are expressed at maximum 
levels during this same phase. TLR-4 expression is increased during the 
secretory phase, which is consistent with its increased expression in 
response to progesterone [61,62,69,70]. 

Several innate immune mediators, known to exhibit steroid 
hormone dependent expression, peak during the period from ovulation 
to implantation, but have the capacity to deviate from the traditional 
antigenic response in order to induce immune tolerance, indicating 
their role in maintaining an adequate endometrial environment for 
initiating pregnancy [71]. Wira et al. [60] identified the ‘window of 
vulnerability’ during the 7-10 days post ovulation, where there is 
increased susceptibility to viral (and possibly bacterial) infection as a 
result of increased steroid hormone expression leading to decreased 
innate, humoral and cell mediated immune activity [60].

Steroid hormones regulate cytokine and chemokine secretion 
throughout the menstrual cycle 

Chemokine and cytokine production and secretion is also regulated 
by the ovarian steroid hormones [72]. These inflammatory mediators 
are constitutively secreted by the epithelial cells within the uterus 
[42]. Together, the chemokines and cytokines create an environment 
with a resident immune cell population that contributes to both the 

inflammation and repair associated with the menstrual cycle and innate 
immune surveillance [5,73,74]. Seven cytokines and chemokines are 
constitutively expressed within the genital tract epithelium throughout 
the menstrual cycle (IL-6, (tumour necrosis factor (TNF)-α, (granulocyte 
colony stimulating factor (G-CSF), granulocyte macrophage colony 
stimulating factor (GM-CSF), macrophage migration inhibitory 
factor (MIF), IL-8, monocyte chemo-attractant protein (MCP)-1 and 
macrophage inflammatory protein (MIP)-1 β [75]. The TNF system is 
known to be regulated by steroid hormones, supporting a key role for 
the family in uterine function [76]. What remains to be elucidated is 
whether there are distinct differences between the pro-inflammatory 
cytokine profile required for endometrial remodelling throughout the 
menstrual cycle, and pathogen initiated cytokine expression [71,77].

Inflammatory Cell Function During the Menstrual 
Cycle: Steroid Hormones as Inflammatory Regulators 
of Myeloid Cells

Inflammatory cells of the immune system express estrogen, 
progesterone and androgen receptors, therefore the functional role and 
spatial distribution of these cells also appears to be menstrual cycle 
dependent [78] (Figure 2).

Neutrophils express estrogen but not progesterone receptors 
[79,80]. Both stimulatory and inhibitory effects of estrogen and 
progesterone on neutrophil release of reactive oxygen species (ROS) 
have been reported [81-84]. Neutrophil numbers are relatively constant 
throughout the menstrual cycle, but peak during menstruation 
following steroid hormone withdrawal and IL-8 up-regulation [85]. 
Neutrophils are the major responders to infection via TLR activation. 
Neutrophils phagocytoze pathogens, produce oxidation compounds, 
secrete microbicides and secrete chemokines for cell recruitment in 
adaptive immunity [6]. Neutrophils also activate prostaglandins and 
leukotrienes via catalysis of arachidonic acid derived from bacterial cell 
membranes. Within the tissues, the neutrophils initiate wound healing 
and repair by promoting angiogenesis and neutrophil extracellular trap 
formation [86,87].

Progesterone stimulates the production of ROS in monocytes 
[88]. Progesterone also promotes TNF-α, IL-1β and IL-8 secretion in 
LPS challenged cells [89,90]. Estradiol, progesterone and androgens 
reduce the secretion of IL-6 in LPS challenged cells [90]. Estradiol and 
progesterone also cause reduced secretion of IL-1α and IL-1β [91]. 
Androgen exposure results in reduced production of prostaglandin 
E2 [92]. Estradiol reduces IL-8 secretion and inhibits chemotaxis of 
monocytes to the monocyte chemotactic protein-1 (MCP-1) [93]. The 
steroid hormones influence the cytokine profile and apoptotic pathways 
in monocytes.

Macrophages accumulate in the endometrial tissue in the pre-
menstrual period when levels of both estradiol and progesterone 
decrease, and levels of macrophage chemo-attractants are up-regulated 
[15,94,95]. Estradiol has been shown to suppress the production of 
TNF- α, IL-1β and MIP-2, while progesterone stimulates these same 
factors [96]. Estradiol also appears to block LPS induction of TLR-4 
[97]. TLR-4 expression is increased during the secretory phase of the 
menstrual cycle when progesterone levels peak, and estradiol levels 
are low. The macrophage phenotype (pro-inflammatory or anti-
inflammatory) appears to be induced by TLR signalling in response to 
either exogenous or endogenous ligands [98].

Eosinophils express estrogen receptors. Estrogen treatment 
enhances eosinophil adhesion and degranulation of cells [99,100]. 
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Eosinophils do not express progesterone receptors [80]. There is little 
known about the effects of steroid hormones on basophils, however 
treatment of cells with immunoglobulin (Ig) E results in enhanced 
histamine secretion [101]. Estradiol stimulates mast cell degranulation 
and histamine secretion [102,103]. In contrast, progesterone inhibits 
mast cell proliferation but stimulates histamine secretion and platelet 
aggregation factor [104-106]. Platelet aggregation is inhibited by both 
estradiol and progesterone [107]. 

The uterine natural killer (NK) cells are low in number during the 
early proliferative phase of the menstrual cycle, increasing in number 
until the late secretory phase. The uterine NK cells express TLR-2, TLR-3 
and TLR-4, however the cellular response to activation is dependent upon 
interactions between the multiple endometrial cell populations [98]. 

The steroid hormone dependent expression of myeloid cells 
throughout the menstrual cycle is responsible for the simultaneous 
controlled endometrial tissue degradation, remodelling and repair, 
and the ability of the epithelium to recognize and respond to microbial 
pathogens. (See Table 2 for a summary of immune mediator expression 
throughout the menstrual cycle)

Dysregulation of Inflammation in Menorrhagia and 
Dysmenorrhea

Women with dysfunctional menstrual cycles exhibit alterations 
in steroid hormone levels, and inflammatory mediators such as 
prostaglandins, chemokines and cytokines (Table 2). The systemic 
estradiol levels in women with dysmenorrhea are higher in the late 
proliferative phase of the cycle when compared to normal cycling 
women [108].

Genes encoding the pro-inflammatory cytokines IL-1β, IL-6 and 
TNF were up-regulated during the menstrual and secretory phases 
of the cycle in dysmenorrheic women whilst members of the TGF-β 
superfamily were down-regulated in these women when compared 
to women with pain-free menstrual cycles [109]. The authors 
concluded that the anti-inflammatory response was insufficient to 
dampen the pro-inflammatory cascade. There was an increased level 
of expression of growth factors during the menstrual phase of the 
cycle, which decreased during the proliferative and secretory phases 
[109]. The down-regulation of TGF-β super family members and the 
corresponding up-regulation of pro-inflammatory cytokines results in 
prostaglandin release, induction of additional inflammatory mediators, 
hypoxic ischemia within the uterus and pain.

Prostaglandin synthesis and the number of prostaglandin receptors 
are increased in uterine tissues in women with menorrhagia compared 
to women with normal menstrual loss, and levels correlate with 
menstrual loss [12]. Prostaglandin concentrations are also higher in the 
menstrual blood collected from women with dysmenorrhea compared 
to women without menstrual pain.

It is possible that the altered expression of pro-inflammatory 
mediators within the endometrial epithelium of women with 
dysfunctional menstrual bleeding may lead to alterations in the 
cellular responses necessary for maintaining homeostasis or 
responding to pathogen challenge. Constant activation of TLRs 
during prolonged bleeding, inflammation and repair may reduce 
the threshold for TLR activation by exogenous ligands leading to 
hyper-responsiveness to PAMP recognition leading to ongoing 
inflammation and pathology. 

Figure 2: Genital tract commensals and pathogens fluctuate throughout the menstrual cycle.
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Mediator Normal menstrual cycle Menorrhagia Dysmenorrhea References
Cytokines/chemokines

GMCSF Regulator and activator of granulocytes and macrophages [183]
Gro α Neutrophil chemotaxis [184]

IL-1

Ovulation promotion
Induces IL-6 production for angiogenesis

Enhances IL-8 production
Inhibited by progesterone

Inhibited by estradiol
Induces NO production

[185,186]

[187,188]

IL-1 α Stimulates T and B lymphocyte proliferation
Stimulates prostaglandin production

[189]

IL-1 β

Endometrial inflammation at menses 
Inhibits apoptosis by NO production

Stimulates T and B lymphocyte proliferation
Stimulates prostaglandin production

[190]

IL-1 ra Antagonises IL-1 to prevent tissue damage after ovulation [191]

IL-2 Progesterone stimulation
HCG suppression [192]

IL-6
Role in steroid hormone production
Reduces granulosa cell proliferation

Inhibited by estradiol
Elevated at menstruation [188,193,194]

IL-8

Up-regulated by progesterone withdrawal
Chemotaxis and activation of monocytes and neutrophils

Proliferation
Menstruation
Angiogenesis

Prevention of infection
Prevention of tissue damage after ovulation

[72,94,195] 

IL-10 Inhibition of progesterone production
Anti-inflammatory antagonist to IL-1, IL-2, IL-6, TNF α [196]

LIF Estradiol biosynthesis [193]

MCP-1

Up-regulated by progesterone withdrawal
Chemotaxis and activation of monocytes and neutrophils

Proliferation
Angiogenesis
Menstruation

[72,94,195]

RANTES Androgen production and induction of LH receptors
Inhibited by estradiol

[197]

TGF β Down regulated at menstruation [109]

TNF α
Endometrial inflammation at menses Androgen production 

and induction of LH receptors
Inhibited by estradiol

Increased at 
menstruation Increased  [109,188,197]

Growth factors

EGF Up-regulated with estradiol
Endometrial proliferation [198]

FGF Endometrial maturation and regeneration
Elevated during proliferative and secretory phases

Decreased receptor 
expression [199,200]

VEGF Angiogenesis Increased proliferative 
activity [199]

Prostaglandins

COX-2
Activated by progesterone withdrawal

Prostaglandin activation resulting in leukocyte influx
Endometrial breakdown

Elevated during 
menstruation Elevated [201,202]

PGE Angiogenesis Elevated at menstruation Elevated [199,201,203]

PGF2 α Up-regulated following progesterone withdrawal
Inflammation at menstruation

Elevated in secretory 
phase Elevated [195,203-205]

TXA2

Vasoconstriction of spiral arterioles inducing hypoxia
Stimulates smooth muscle contraction for endometrial 

sloughing
Menstrual pain nociception

Elevated at menstruation

Matrix metalloproteases

MMP-2
Relaxation of endometrial blood vessels enhancing edema 

and leukocyte recruitment
Menstrual pain nociception

Reduced at menstruation [206]

MMP-9 Menstrual pain nociception Reduced at menstruation [206]

Table 2: Cytokine/chemokine/prostaglandin expression in endometrium in normal and in pathology.
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Infection Risk and Commensal Microbes
The menstrual cycling of the endometrium represents a constant 

tissue remodelling process encompassing cell death, proliferation 
and migration. The endometrium is one of very few tissues that can 
undergo such significant remodelling without scar tissue formation, 
further supporting the tight regulation surrounding inflammation 
during this process [110]. The commensal microbiota is responsible 
for maintaining epithelial homeostasis and integrity, and contributes 
to the tissue damage response via recognition by innate immune cells 
expressing TLRs [111-113]. 

There exists a close relationship between regulated microbial 
growth in the female genital tract and the menstrual cycle.  Genital tract 
infections occur in a menstrual cycle-dependent fashion, which can be 
attributed to changes in secreted levels of the steroid hormones estradiol 
and progesterone, which influence the expression of immune mediators 
[30,61,114]. Many members of the endogenous microbiota use these 
hormones as growth factors, while for others they are inhibitory 
[115]. The concentration of opportunistic pathogens increases during 
menstruation and the early proliferative phase of the cycle at the time 
of progesterone withdrawal. Levels of the endogenous lactobacilli peak 
with estradiol levels during the secretory phase of the cycle [116].  

Previous studies indicate that there are some changes in Lactobacillus 
sp. community composition, but that L. crispatus is associated with 
long-term stability within the vaginal microbiome [117]. However, 
absence of Lactobacillus sp. has been reported in healthy, asymptomatic 
women with a lower genital tract microbiota dominated by other lactic 
acid producing species including Atopobium sp., Megasphaera sp. or 
Leptotrichia sp. [118,119]. These reports may suggest that maintenance 
of the host microbiome (expression of microbial genes and subsequent 
secretion of metabolites) rather than the host endogenous microbiota 
(individual microbial species) is key in preserving a healthy genital 
tract environment. The inability to identify a site-specific (vaginal) ‘core 
microbiome’ in the healthy asymptomatic women of reproductive age 
supports the concept of functional redundancy in the microbiome [120-
123]. Whilst functional redundancy may imply overall equilibrium in 
the system, it is reasonable to assume that the relative abundance of 
some members of the commensal microbial community will activate 
the innate immune response to a greater extent than for example the 
non-antigenic endogenous lactobacilli, leading to activation of a pro-
inflammatory cascade, dysbiosis and instability within the site-specific 
microbiome. Functional redundancy has also been reported for the 
human microbiome in healthy individuals and in the gut microbiome 
in lean and obese individuals [124,125]. 

Microbial pathogens have at their disposal diverse mechanisms 
for interacting with and manipulating host cells for the benefit of 
their survival [126]. Bacteria are capable of selectively inducing either 
pro-apoptotic or anti-apoptotic pathways in human cells to mediate 
their survival within the host environment [127]. Apoptosis plays 
a key role in microbial pathogenesis and antibacterial immunity 
[128]. The recognition of apoptotic cells by the immune system 
leads to phagocytosis and activation of anti-inflammatory mediators 
[129]. However, for intracellular pathogens, survival is dependent 
on inhibition of apoptosis of the host cell [130]. The endogenous 
genital tract Lactobacillus sp. are capable of inducing this switching 
independently of pH and lactate, further supporting a role for the 
microbiome in reproductive pathology or homeostasis [131-133]. 

Numbers of anaerobic Gram-positive cocci increase during 
the menstrual phase of the cycle, and in response to antibiotic 

administration [134]. An increase in the presence of the  Gram-positive 
cocci including Streptococcus anginosus, Peptostreptococcus anaerobius 
and P. asaccharolyticus has been linked to disturbances in the lower 
genital tract microbiota. Interestingly, these species appear to exist in 
equilibrium with the lactobacilli in healthy women, but can be disrupted 
in susceptible women during the menstrual phase of the cycle. The 
complexity of the host-microbe interaction is further highlighted by 
the inability to achieve resolution of all dysbioses following antibiotic 
treatment [135]. Treatment resistance of Gardnerella vaginalis in 
confirmed cases of bacterial vaginosis further highlights the need 
to consider the microbiome in toto, rather than only an individual 
member of the genital tract microbiota when treating genital tract 
dysbiosis [136-138]. Further, abnormalities in the lower genital tract 
microbiota are implicated in endometrial pathology including adverse 
obstetric outcomes [139-141].

Evidence of transient exposure to microbial commensals or 
pathogens has been reported in the upper genital tract [142-145]. 
Microorganisms have been isolated from the endometrial cavity in 
both the presence and the absence of symptoms of infection and/or 
inflammation, suggesting that the presence of microorganisms within 
the upper genital tract may not always reflect a pathological process; 
rather the endometrial cavity is not sterile, and harbours an endogenous 
microbiota [146-150]. Cultures of vaginal and endocervical specimens 
have proven to be poor indicators of the presence of microorganisms 
within the endometrial cavity and discordant results for microbial 
species were obtained when sampling both sites in asymptomatic 
women [151,152]. In susceptible women, the endogenous endometrial 
microbiota may lead to endometrial pathology or may serve to maintain 
homeostasis.

Nutritional Requirements of the Host Microbiota
A critical factor controlling the composition and distribution of the 

host microbiota is the nutritional requirements of individual microbial 
community members. Members of the commensal microbiota 
implement an array of direct interaction strategies to compete with 
opportunistic pathogens present as minority community members. 
Commensals produce bacteriocins and toxins that inhibit members of 
the same or closely related species [153]. Members of the endogenous 
microbiota are also capable of altering the host environment by shifting 
the pH creating a niche prohibitive to pathogen growth [153-155]. The 
consumption of nutrients and production of metabolites by endogenous 
microbiota can also alter pathogen growth and virulence [156,157]. 
However, some pathogens (including members of the Enterobacteriaceae 
and obligate anaerobes) have evolved to use alternative nutrients to 
manage nutritional competition by commensals [158,159]. Alterations 
of host inflammation in response to pathogens can impede the growth 
of some community members including obligate anaerobes from the 
families Bacteroidetes and Firmicutes more rapidly than others (E. 
coli) due to their inability to utilize electron acceptors such as nitrate, 
which is generated by an inflamed epithelium [160]. There are also 
opportunistic pathogens capable of using resources more efficiently 
than commensals. Iron, an essential resource for bacterial growth is 
utilized by iron-chelating siderophore producing bacteria. Host cells 
can actively block siderophore production and cellular proliferation 
in members of the endogenous microbiota making competition with 
opportunists difficult [161]. Hemoglobin is a precursor of many natural 
antimicrobial peptides [162]. Erythrocytes from the endometrium may 
therefore be another source of antimicrobial activity acting alongside 
epithelial cells and leukocytes [163]. Hemoglobin derived peptides 
exhibit diverse activities including immunomodulatory action [164]. In 
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contrast, hemoglobin can also promote microbial growth by providing 
iron or interfering with oxygen metabolism by leukocytes. Hemocidins 
(short chain alpha-hemoglobins) demonstrate antimicrobial activity 
against bacteria, particularly Gram-negative species. Hemocidins have 
been isolated from post cesarean section uterine lochia [162,165]. 

Menorrhagia is characterized by excessive menstrual blood loss, 
whilst dysmenorrhea is associated with increased inflammation and cell 
damage. Therefore, in these women, the haemoglobin concentration is 
likely to exceed that of other endogenous antimicrobial peptides within 
the uterine cavity. Notably, despite producing an excessive amount of 
bacterial nutrition (in the form of menstrual blood), menorrhagia has 
not been associated with an increased incidence of pelvic infection. 
The endogenous Lactobacillus sp. do not require iron for their growth, 
suggesting that their numbers are not likely to increase significantly 

during menstruation in contrast to many opportunistic members of the 
endogenous microbiota (including G. vaginalis) who have developed 
multiple systems to exploit both low level and excess free iron [166,167]. 
It is therefore possible that for women with dysfunctional menstrual 
bleeding there exists a delicate balance between increased numbers 
of iron-dependent pathogens, and increased levels of antimicrobial 
hemocidins. A robust endogenous microbiota, such as that linked with 
localized administration of exogenous progesterone is more likely to 
tolerate fluctuations in individual species numbers and nutrient supply. 
It seems reasonable to assume that in these women, the immune system 
must choose between maintaining homeostasis and mounting an 
immune response to pathogen challenge. 

Microbes and their Interaction with Immune Regulators
Staphylococcus aureus and microbial products signalling via TLR-

Figure 3: Proposed pathways of DAMP and PAMP-associated TLR activation in normal and dysfunctional menstrual cycling.
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2 and TLR-5 induce epithelial repair, survivial and growth [168]. This 
repair occurs via an independent non-inflammatory pathway linking 
TLR activation and epidermal growth factor receptors associated with 
epithelial cells [168]. Peptidoglycan has been associated with wound 
closure and repair via epithelial cell proliferation and migration. TLR-
2 and TLR-5 ligands (peptidoglycan, lipotechoic acid and flagellin) all 
appear capable of promoting wound repair. It is well accepted that TLR 
activation causes pro-inflammatory cytokine (IL-1β, TNF-α, IL-6 and 
IL-8) release by epithelial cells, however TLR mediated epithelial repair 
appears independent of pro-inflammatory cytokine induced cellular 
migration and proliferation at the wound site. This data suggests that 
the endogenous microbiota is capable of enhancing tissue remodelling 
and repair.

Whilst TLRs are powerful and somewhat specific immune 
regulators, recent evidence suggests that activation of both TRL-2 and 
TLR-6 is required for an adequate innate response to Mycoplasma sp. 
infection [169]. Distinct TLRs have the potential to mediate epithelial 
homeostasis in favour of ongoing pathology or regeneration and repair. 
Many bacteria, particularly anaerobic species, which are common 
inhabitants of the endogenous genital tract microbiota produce large 
quantities of short chain fatty acids (acetic, butyric and propionic 
acid). Short chain fatty acids are capable of modulating the immune 
response by inhibiting the production of pro-inflammatory cytokines, 
chemotaxis and phagocytosis [170-172]. The metabolites also cause 
apoptosis in neutrophils [173,174]. Commensal bacteria reported 
to be opportunistic pathogens demonstrate the capacity to alter the 
immune response as a trade-off for virulence. Highly invasive strains 
of Prevotella bivia produced the weakest pro-inflammatory (IL-6 and 
IL-8) response during in vitro culture when compared to non-invasive 
strains [175]. 

Lactobacillus iners, a common genital tract commensal is capable 
of up-regulating constitutive SLPI secretion, however, increased levels 
of L. iners results in the reverse effect [176]. Interestingly, L. iners is the 
Lactobacillus sp. frequently associated with intermediate or bacterial 
vaginosis vaginal flora and is the dominant vaginal taxon reported after 
treatment for bacterial vaginosis [177-181]. L. crispatus causes a strong 
reduction in SLPI secretion, and presence of this Lactobacillus sp. is 
associated with an absence of bacterial vaginosis [181]. Current evidence 
suggests that the dominant genital tract lactobacilli can contribute to 
the mucosal immune response in diverse ways. The regulatory effect of 
SLPI secretion is inversely associated with the capacity of the invading 
or commensal bacteria to evoke a pro-inflammatory response. It is 
therefore possible that microbes present in the genital tract are capable 
of causing down-regulation of the immune response in exchange for 
reduced virulence [182]. 

Microbial pathogens and their products appear to have two possible 
roles in epithelia: Cell death, injury and inflammation, or tissue repair, 
cell migration and proliferation, and limited inflammation. Therefore, 
under physiological conditions, the presence of certain members of the 
endometrial microbiota may control epithelial barrier integrity without 
causing inflammation (Figure 3).

Conclusion
Subacute inflammation associated with dysbiosis in the endogenous 

endometrial microbiota in women with primary menorrhagia and/
or dysmenorrhea may cause TLR binding, and subsequent activation 
of the pro-inflammatory cascade leading to increased secretion of 
mediators involved in apoptosis, haemostasis, inflammation and 
repair. Alterations in prostaglandin and cytokine expression in the 

endometrium of these women, combined with an altered microbiome 
may well contribute to ongoing activation of an innate immune 
response leading to dysregulation of the normal menstrual cycle 
associated with tissue remodelling. The menstrual phase of the cycle 
is frequently associated with an increased notification of genital tract 
infection possibly due to heightened immune surveillance, or a reduced 
response threshold due to persistent TLR activation by DAMPS. 
Subsequent increases in cellular damage and the release of free iron and 
hemocidins within this niche may lead to dysbiosis of the endometrial 
microbiome and may explain why some women do not respond 
to treatment. Characterization of the endometrial microbiome in 
women with normal menstrual cycles and in those with dysfunctional 
menstrual bleeding may elucidate redundancy within the microbiome 
and identify targets for restoring eubiosis.
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