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Introduction
Glioblastoma multiforme (GBM) is the most aggressive brain 

tumor. Despite significant advancements in therapy, including surgery, 
radiotherapy (RT) and chemotherapy, the prognosis of GBM remains 
poor [1,2]. To control the residual microscopic or macroscopic 
disease after principal surgery, the standard care comprised RT with 
concomitant and adjuvant temozolomide (TMZ) [3,4]. However, 
the median survival of primary GBM was approximately 15 months 
with <30% patients surviving beyond 2 years [3]. The addition of 
bevacizumab to standard RT-TMZ therapy did not significantly 
improve the overall survival duration [5,6]. Therefore, an advanced 
targeting strategy is an urgent prerequisite for GBM treatment. 

Autophagy, an evolutionarily conserved response to stress and 
starvation, is responsible for the degradation of non-functional organelles 
and proteins [7]. It is a drug resistance mechanism and was found to be cyto-
protective against glioma cells [7,8]. Sotelo et al. [9] reported a randomized 
trial wherein the addition of chloroquine (CQ) to conventional therapy 
dramatically improved the survival of GBM patients. Although, the exact 
mechanism was then unknown, CQ is now contemplated as an autophagy 
inhibitor to prevent the emergence of drug resistance [7,10]. An interesting 
theory of “battery operated tumor growth” proposed that cancer cells 
induced an autophagy state in the tumor microenvironment leading to 
the increased production of recycled stromal nutrients to fuel the anabolic 
and aggressive progression of cancer cells [11,12]. A synergistic association 
of autophagy inhibitor, CQ, and promoter, sirolimus or rapamycin, 
was termed as the “autophagy paradox” [13]. This concept was used 
for clinical varieties of cancer to examine its potential effect on the drug 
resistance reversal upon sirolimus-hydroxychloroquine (HCQ) add-on to 
metronomic chemotherapy [14].

Thus far, double modulation of autophagy by simultaneous 
administration of the autophagy inducer (sirolimus) and autophagy 
inhibitor (HCQ) with standard TMZ-RT in newly diagnosed GBM 
patients has not been reported. We hereby describe 3 cases with 
promising results.

Patients and Methods
The clinical data of 20 patients pathologically diagnosed with 

primary GBM and received surgery followed by non-palliative TMZ 
and RT therapy were assimilated retrospectively from January 2007 
to April 2014. This retrospective review was approved by the institute 
review board. The patients may be treated individually with the related 
medications, besides TMZ-RT, such as bevacizumab, Rapa and HCQ. 
All the patients were explained the treatment strategy before obtaining 
their written consent. Median survival was calculated from the date 
of surgery and the toxicities were graded according to the common 
terminology criteria for adverse events version 4.0 (CTCAE v4.0).
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Abstract
Background: Combined surgery, adjuvant radiotherapy (RT) and temozolomide (TMZ) remain the standard 

treatment for glioblastoma multiforme (GBM). However, the outcome is grave and novel therapeutic targets are 
actively researched in translational studies. Double modulation of autophagy by simultaneous administration of 
the inducer, sirolimus, and the inhibitor, hydroxychloroquine (HCQ) has been applied in clinics and reported to be 
synergistic as an “autophagy paradox”. We describe the first add-on of sirolimus-HCQ to GBM treatment. 

Patients and methods: We retrospectively enrolled 20 GBM patients who received surgery followed by non-
palliative TMZ and RT therapy in our institute between January 2007 and April 2014. Of these, 3 patients were 
treated daily with adjunctive HCQ (400 mg) and sirolimus (2 mg) in addition to the standard TMZ-RT treatment. 

Results: The median survival time of the 20 patients was 13.7 months (range: 2.2 to 37 months). Surprisingly, 
the 3 patients who received sirolimus and HCQ as an add-on treatment survived for a longer period of time (median 
34 months). Transient grade 3 myelotoxicity and grade 2 fatigues were rapidly resolved by treatment interruption or 
dose reduction.

Conclusion: “Autophagy paradox” might be advantageous in combination with standard TMZ-RT treatment for 
newly diagnosed GBM patients. 
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Results
Of the 20 patients, 2 received bevacizumab plus TMZ-RT 

treatment and 3 received sirolimus and HCQ plus TMZ-RT treatment. 
The median survival of these 20 patients was 13.7 months (ranged over 
2.2 to 37 months). Interestingly, the 3 patients receiving sirolimus and 
HCQ as an add-on treatment exhibited longerl survival (median 34 
months) than the other patients. The daily dosage of 1-2 mg sirolimus 
and 200-400 mg HCQ was considered safe and tolerable based on our 
previously published results [14]. The clinical treatment is summarized 
in Table 1.

Case Series 
Case 1: A 71 year old woman presented with headache, dizziness, 

and progressive decline of cognition and speech for several weeks 
in 2013. Magnetic resonance imaging (MRI) study showed a right 
temporal 6.3 × 4.5 cm tumors with necrotic changes and peripheral 
enhancement with marked vasogenic edema. Tumor resection was 
performed in 2013/01 and histopathologic examination confirmed 
GBM. Post-operative computed tomography (CT) scan showed residual 
enhancement over tumor bed. The patient was prescribed daily oral 2 
mg sirolimus and 400 mg HCQ as an add-on treatment to the standard 
TMZ-RT treatment for one year. TMZ was prescribed at a daily dosage 
of 75 mg/m2 during RT and 150 mg/m2 on days 1-5 of 28 day cycle after 
RT. The clinical targeted volume-high (CTVH) and clinical targeted 
volume-medium (CTVM) were 5940 cGy/27 fx and 4860 cGy/27 fx, 
respectively. The TMZ dosage was reduced to 240 mg/day for 4 days 
every month with half dosage of sirolimus (1 mg) and HCQ (200 mg) 
for the following treatment cycles owing to grade 3 myelotoxicity after 
the second cycle of adjuvant chemotherapy. The treatment lasted for an 
additional 18 months without notable side effects. Brain MRI findings 
were followed regularly. She was capable of performing daily activities 
under assistance without evidence of recurrent disease for more than 3 
years until now (Figures 1A and 1B).

Case 2: A 62 year old woman presented at the emergency 
department with weakness in her left extremities for 2 h in 2013/04. 
The symptom was preceded with dizziness and headache on the same 
day. Glasgow coma scale (GCS) was E4V5M6. The brain CT showed 
intracranial hemorrhage over right occipital lobe, which necessitated an 
emergent decompression surgery. Intraoperatively, a brain tumor was 
seen apart from the obvious hemorrhage. Postoperative MRI showed 
a cystic tumor with hyperintense T2 and hypointense T1 signals with 
heterogeneous contrast enhancement. The pathological report was 
consistent with GBM. The patient was prescribed 2 mg sirolimus and 
400 mg HCQ per day as an add-on to the TMZ-RT treatment. The 
doses prescribed for CTVH and CTVM were 6600 cGy/33 fx and 
5000 cGy/25 fx, respectively. TMZ was prescribed at a dosage of 75 
mg/m2 daily during radiotherapy period, followed by another 6 cycles 
of adjuvant TMZ at a fixed dose of 150 mg/m2 on days1-5 every 28 
days. Maintenance daily dose of 200 mg HCQ and 1 mg sirolimus was 
continued for another 1 year. There was neither >grade 2 toxicities 
nor treatment delay in the whole therapy course. Brain images were 
followed at 3 month intervals. There was no radiographic evidence of 
disease recurrence for nearly 3 years (Figures 2A and 2B).

Case 3: A 69 year old man presented with progressive weakness of left 
limbs. The brain MRI showed right temporal lobe tumor, measuring 5.3 
× 4.7 × 4.6cm with necrosis and prominent vasogenic edema. A partial 
resection was performed in 2013/06. Vascular endothelial proliferation 
with tumor necrosis and GBM were confirmed pathologically. He 
was treated with TMZ-RT coupled with daily administration of 2 mg 

sirolimus and 400 mg HCQ for 2 weeks. Then, dosage was reduced by 
50% to 1 mg sirolimus and 200 mg HCQ daily for another 7 months 
due to grade 2 fatigue. Dosages prescribed for CTVH and CTVM 
were 6000 cGy/30 fx and 5000 cGy/25 fx, respectively. Concomitant 
TMZ was prescribed as 75 mg/m2 continually during radiotherapy and 
followed by 6 cycles of adjuvant TMZ at 150 mg/m2 on days 1-5 of 28 
day cycle. MRI showed recurrent GBM 18 months after surgery. Owing 
to the high risk of repeated surgery and re-irradiation, bevacizumab 
was used as salvage therapy. The patient survived for an additional 10 
months. 

Discussion
We have applied the autophagy paradox theory to the treatment 

of clinical varieties of cancers [14], including these 3 cases. The TMZ-
RT treatment caused DNA damage and rendered GBM into a high 
stress condition [15]. Stress induced autophagy acts as one of the drug 

 

Figure 1: (A) Pre-operative MRI showed right temporal lobe mass in 2013/01. 
GBM was confirmed. (B) Follow-up MRI in 2015/07. No evidence of recurrence.

Patient 1 Patient 2 Patient 3

Concurrent 
TMZ-RT phase

RT 5940 cGy/27 fx 6600 cGy/33 
fx

6000 cGy/30 
fx

TMZ 75 mg/m2 QD 
during RT

75 mg/m2 QD 
during RT

75 mg/m2 QD 
during RT

Sirolimus/HCQ

Sirolimus: 2 
mg QD 

HCQ: 400 mg 
QD

Sirolimus: 2 
mg QD 

HCQ: 400 mg 
QD

Sirolimus: 2 
mg QD, HCQ: 
400 mg QD 
for 2 weeks 
then reduce 

dose to 
sirolimus 1mg 

QD, HCQ 
200 mg QD 

for another 4 
weeks

Adjuvant phase

TMZ

150 mg/m2 
on D1-D5 of 
28 days for 6 

cycles

150 mg/m2 
on D1-D5 of 
28 days for 6 

cycles

150 mg/m2 
on D1-D5 of 
28 days for 6 

cycles

Sirolimus/HCQ

Sirolimus: 2 
mg QD, HCQ: 
400 mg QD for 
2 cycles then 
reduced to 

sirolimus 1 mg 
QD and HCQ 
200 mg QD 

for another 4 
cycles

Sirolimus: 2 
mg QD 

HCQ: 400 
mg QD for 6 

cycles

Sirolimus: 1 
mg QD 

HCQ: 200 
mg QD for 6 

cycles

Maintenance 
phase Sirolimus/HCQ

Sirolimus: 1 
mg QD 

HCQ: 200 
mg QD for 18 

months

Sirolimus: 1 
mg QD 

HCQ: 200 
mg QD for 12 

months

Sirolimus: 1 
mg QD 

HCQ: 200 
mg QD for 1 

month

Table 1: Dose and schedule summary of the 3 cases.
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the overall survival duration [5,6]. To the best of our knowledge, there 
was no reported drug interaction between TMZ, sirolimus, and HCQ. 
Transient grade 3 myelotoxicity and grade 2 fatigues were observed. 
However, these could be rapidly resolved by the short treatment 
interruption and dose reduction. The toxicity of 3 drug combination 
was well tolerable in the dose range of 1-2 mg sirolimus and 200-400 
mg HCQ for 8-18 months of daily treatment. The recommended dosage 
would begin with 2 mg sirolimus and 400 mg HCQ per day for a period 
of 18 months while allowing the dose modification as an adjunctive 
treatment to TMZ-RT. An official clinical trial will be launched.
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Figure 2: (A) Pre-operative CT showed right occipital lobe tumor with 
hemorrhage in 2013/04. GBM was confirmed. (B) Follow-up MRI in 2015/10, No 
evidence of recurrence.
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