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Abstract
The aim of this study was to separate phenol from Bio-Oil obtained from the pyrolysis of agricultural wastes 

(BAW). The BAW was obtained in one step catalytic pyrolysis in which temperature of the reactor was kept at 30°C 
and then increased up to 900°C. After pyrolysis, the BAW was distillated and analyzed by Gas chromatography and 
Mass spectrometry (GC-MS) technique and comprehensive two-dimensional gas chromatography with time-of-flight 
mass spectrometry detection (GC × GC/TOFMS) Where BAW showed the presence of more than 120 other important 
compounds and phenol. After detection, phenol was separated by solvent extraction method, where Ethyl ether 
(C4H10O), Caustic soda (NaOH) and Hydrochloric acid (HCl) were used to separate phenol from BAW and then Nuclear 
magnetic resonance spectroscopy (NMR) was done to confirm the recovery of phenol.
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Introduction
Bio-oil is a complex mixture which contains a large number of 

organic compounds, including alcohol, organic acids, phenol, aldehyde, 
ketone, etc. Some of these chemicals, such as phenols are important 
industrial raw materials and additives [1-3]. The total amount of 
phenolic compounds in the pyrolysis oil varies from 20.0% to 30% 
depending on the biomass used and operating conditions [4,5]. Bio-
oil contains several hundreds of chemicals as a result, it exhibits some 
inferior properties, such as high water content, high oxygen content, high 
viscosity low flash point, and strong corrosiveness [6]. These drawbacks 
make it difficult to be directly used as a vehicle fuel. Therefore, several 
upgrading technologies have been developed to improve the quality of 
bio-oil, including catalytic hydrodeoxygenation [7-9], catalytic cracking, 
steam reforming, catalytic esterification, supercritical upgrading and so 
on [10]. Compared with phenols derived from petroleum fuel, these 
phenolic compounds are renewable and easily obtained. These phenols 
are not only used as a replacement for phenol in phenol–formaldehyde 
resins but also as raw materials for developing bio-based antioxidants 
and many other purposes [11-15]. Pyrolysis offers the cheapest route 
to renewable liquid fuels. Nonetheless, many aspects of the pyrolysis 
pathway are still under investigation. The diverse array of research 
into biomass pyrolysis is multi-disciplinary and multi-dimensional 
and includes Pyrolysis Oil (PO) characterization, kinetic studies, new 
distillation systems like vacuum distillations system, computational 
fluid dynamics, design of new reactors, new catalytic systems, 
microwave-assisted pyrolysis, optimizing the pyrolysis yield, process 
intensification, techno-economic analysis, molecular distillation 
system, environmental assessment, in addition to enterprise-wide 
and supply chain optimization [16-22]. Now-a-day biomass has an 
un ignorable importance in our life and in industries as an interesting 
renewable resource used to provide second generation of biofuels or 
chemicals [23-27]. Large amount and CO2 neutrality with low sulfur 
and nitrogen contents make biomass a sustainable and eco-friendly 
energy source [28-32]. Recently bio-oil has been paid attention to 
provide fuels and chemicals and the residues of pyrolysis could be used 
as soil fertilizer [33-38]. Biomass is a CO2, H2 and syngas neutral energy 
source that has considerable stockpile. It can replace fossil feedstock 

in the production of heat, electricity, transportation fuels, chemicals, 
soil fertilizers and other important materials [39-41]. Liquid bio-fuels, 
which are considered to be substitutes for traditional fossil fuels, can 
be produced from biomass in different ways, such as high-pressure 
liquefaction, fast pyrolysis and Hydro-thermal pyrolysis [42-45]. 
Pyrolysis is a technology that can efficiently convert biomass stockpile 
into liquid biofuels. The liquid obtained from fast pyrolysis, which 
is also called crude bio-oil, may be used as burning oil in boilers or 
even as a transportation fuel after upgrading [46,47]. In fast pyrolysis, 
lignocellulosic molecules of biomass are rapidly decomposed to short 
chain molecules in the absence of oxygen [48]. Under conditions of high 
heating rate, short residence time, and moderate pyrolysis temperature, 
pyrolysis vapor and some char are generated. After condensation of the 
pyrolysis vapor, liquid product can be collected in a yield of up to 65-
75% on a dry weight basis [49,50].

Experimental
Materials discarded sawdust and other reagents 

The BAW was obtained by pyrolysis of a mixture (3:1 in mass) of 
sawdust (Pterocarpus, Eucalyptus and Kapok ect) and CaO. The sawdust 
was mixed with the water after their granulometric reduction Calcium 
oxide was added to this mixture. After preparation, the mixture was 
dried at environmental temperature for 24 hours. 

Production of BAW

The BAW was produced from the pyrolysis of sawdust in the 
presence of 25% CaO as catalyst. The biomass sample was kept inside 
a stainless steel reactor of pyrolysis system which was connected to 
two other glass chambers as shown in Figure 1. The temperature of 
the chamber which had biomass was increased from 30°C to 900°C 
with the help of electric heater, temperature controller cabinet, and 
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6890 with an Agilent mass selective detector of series 5973, a capillary 
polar wax column, polyethylene glycol (PEG)-coated (length of 
30 m, internal diameter of 0.25 mm, and film thickness of 0.25 μm) 
Chromatographic conditions: Injection volume of 0.2 μL, oven at 40°C 
(1 min) 6°C min−1 up to 300°C (10/Min) split mode with a ratio of 100:1 
and injection temperature of 290°C. Time taken was 54.3 minutes, He 
(helium) as carrier gas with a flow rate of 2.9 mL min-1 (Figure 3). 

two condensers. In this system through biomass was converted to 
biogas and then condensed to bio-oil at temperatures 90°C and 10°C 
respectively. The two condensed fractions BHTP and BLTP were 
collected and introduced for further analysis (Figure 2).

GC-MS analysis of BHTP and BLTP (BAW)

The bio-oil identification were performed on a GC Agilent series 
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Schematic diagram of  BAW  Pyrolysis System
1. Electric heater; 2. pressure maintainer;  3. Main electric furnace 
4. Reactor having biomass inside; 5. condenser with 100ºC; 6. condenser with 5ºC
7. Hot water glass 100ºC; 8. Pump passing hot water to condenser 5; 9. Cooler;;10. 
Exhaust gas collector;

Figure 1: Schematic diagram of Biomass pyrolysis system.

Figure 2: Chromatograph operated in splitless mode. 

Figure 3: Chromatograph operated in split mode. 
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while small peaks showed other groups, Library match was used for 
identification of compounds based on probability score and each 
compound was detected very clearly and with a high probability 
value. According to GC/MS analysis summarized in Tables 1 and 2, 
mostly aromatics and aliphatic groups were enriched in the sample. 
After GC/MS analysis, each peak of chromatogram was matched with 
library one by one, where different peaks showed different Aliphatic 
and Aromatic compounds as well as other important compounds like 
phenol and ketone (Figures 7 and 8).

Hydrocarbons in BAW

Tables 2 and 3 show C8–C17 hydrocarbons and other classes were 
enriched in the BAW. As shown in Table 1. Aliphatic and aromatic 
hydrocarbons with C8–C17 are predominant in the BAW sample with 
a % area of 53.99 

Alcohols, Aldehydes, Ketones, Ethers, Esters, Phenols, and 
Nitrogenous compound also present in BAW while in these classes, 
Phenols and ketones occupied more space compared to others as shown 
in Table 4 and 5. Above Figure 9 is the graphical representation of 
both fractions BHTP (blue) and BLTP (red) Show % area of all groups 
present in BAW.

Catalytic optimization 

Numerous reaction were carried out in which the amount of 

Extraction of phenols

A feasible separation route to isolate phenolic fraction from bio-
oil was investigated. A certain amount of Ethyl ether (C4H10O) and 
20 ml of 10% solution of Caustic soda (NaOH) was added to bio-oil 
to separate the water and phenol from the bio-oil by reacting with 
phenol to form Sodium phenoxide (NaOH+C6H6O=NaOC6H5+H2O). 
The phase splitting was initiated and two phases occurred, a bottom 
aqueous layer which was a little bit clear and transparent brown 
compared to an upper layer that was very viscous and dark. The 
formed bottom layer was separated and 20 ml of 10% solution of HCl 
was added to it, to react with NaOC6H5 in solution to form NaCl and 
phenol (NaOC6H5+HCl=C6H6O+NaCl) and after pH test, the water 
was evaporated through hot air and the remaining compound (phenol) 
was washed with liquid NaCl and introduced to NMR to confirm the 
recovery of phenol from bio-oil as shown in Figure 4 and a simple sketch 
in Figure 5. While reactions and mechanisms are shown in Figure 6.

Results and Discussion
Chemical composition of BAW

BAW was a dark and sticky liquid mixture of more than 120 
of organic compounds. The compounds detected in BAW can be 
classified into hydrocarbons, alcohols, phenol, ethers, aldehydes, 
ketones, carboxylic acids, and other esters. But large peaks of GC/
MS mostly showed aromatic, aliphatic, and cyclic hydrocarbons 

Figure 4: NMR chromatogram showing the presence of phenol.

Figure 5: The simple sketch above shows how to recover phenol from bio-oil step by step.
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Figure 6: The reaction steps and mechanism above show how NaOH reacts with Phenol.

Figure 7: Shows only aliphatic hydrocarbon peaks.

Figure 8: Shows only aromatic hydrocarbon peaks.
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Figure 9: % area of compounds in BHTP (blue) and BLTP (red).
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NO Compound’s Name Formula Retention time
1 Benzene, 1-ethyl-3-methyl C9H12 8.18
2 Benzene, 1,2,3-trimethyl C9H12 9.00
3 Decane C10H22 9.15
4 2-Decene, (Z) C10H20 9.32
5 cis-3-Decene C10H20 9.52
6 Benzene, 1,2,3-trimethyl C9H12 9.72
7 Benzene, 2-propenyl C9H10 9.82
8 Indane C9H10 10.17
9 Indene C9H8 10.30

10 Benzene, butyl C10H14 10.52
11 Benzene, 1,2-diethyl C10H14 10.72
12 Benzene, 1-methyl-4-(1-methylethyl) C10H14 11.30
13 Undecane C11H24 11.65
14  5-Undecene, (Z) C11H22 11.80
15 Benzene, 4-ethenyl-1,2-dimethyl C10H12 12.65
16 1H-Indene, 2,3-dihydro-5-methyl C10H12 12.90
17 7-Methyl-1,2,3,5,8,8a-hexahydronaphthalene C11H16 13.00
18 2-Methylindene C10H10 13.10
19  Benzene, pentyl C11H16 13.13
20 Naphthalene, 1,2,3,4-tetrahydro C10H12 13.25
21 Benzene, (1-methylbutyl) C11H16 13.38
22 Naphthalene C10H8 13.75
23 3-Dodecene, (Z) C12H24 13.90
24 3-Dodecene, (Z) C12H24 14.05
25 Dodecane C12H26 14.15
26 3-Dodecene, (E) C12H24 14.25
27  3-Dodecene, (Z) C12H24 14.50
28 2-Ethyl-2,3-dihydro-1H-indene C11H14 14.95
29 Benzene, hexyl C12H18 15.55
30 Benzene, (1-methylpentyl) C12H18 15.70
31 2-Tridecene, (Z) C13H26 16.30
32 Naphthalene, 1-meth yl C11H10 16.35
33 Tridecane C13H28 16.45
34 3-Tridecene, (E) C13H26 16.55
35 1H-Indene, 1-ethylidene C11H10 16.75
36  Benzene, heptyl C13H20 17.90
37 1-Methyl-2-n-hexylbenzene C13H20 18.00
38  Naphthalene, 2-ethyl C12H12 18.60
39  3-Tetradecene, (E) C14H28 18.50
40 Tetradecane C14H30 18.65
41  3-Tetradecene, (E) C14H28 19.00
42 Naphthalene, 1,7-dimethyl C12H12 19.15
43 Pentadecane C15H32 20.72
44 n-Nonylcyclohexane C15H30 21.80
45  Hexadecane C16H34 22.70
46 Cyclopentane, undecyl C16H32 22.80
47 Heptadecane C17H36 24.58

Table 1: Aliphatic and Aromatic hydrocarbons identified in BAW.

NO Compound’s Name Formula Retention time (Min)
1 pentanol C5H12O  9.50
2 pentanone C5H10O 7.63
3 hexanone C6H12O 9.50
4 octanone C8H16O 20.83
5 heptanone C7H14O 15.77
6 Hexenol C6H12O 13.89
7 cyclopentanone C5H8O 11.23
8 cyclopentanone, C1  C6H10O 13.63

Table 2: Compounds of other groups detected in BAW.

9 cyclopentanone, C2 C7H12O 16.03
10 cyclohexenone, C1 C7H10O 19.77
11 heptanone C7H14O 15.77
12 cyclopentenone, C3  C8H12O 22.57
13 acetophenone C8H8O 24.97
14 cyclohexenyl, ethanone C8H12O 26.03
15 cyclopentenone, C4 C9H14O 26.83
16 cyclohexanone, ethylidene C8H12O 28.17
17  cyclopentenone, C3 methylene C9H12O 31.50
18  indenone, hexahydro C9H12O 37.50
19 ethane, diethoxy C6H14O2 9.23
20 furanmethanol C5H6O2 17.37
21 furan, C2 C6H8O 22.97
22 phenol C6H6O 23.37
23 phenol, C1 C7H8O 24.97
24 pyrrole C4H5N 9.63
25 pyrrole, C1 C5H7N 10.43
26 piperidine, C1 C6H13N 11.37
27 piperidine, C1 C6H13N 11.50
28 piperidine, C2 C7H15N 15.37
29 pyridine, C1 C6H7N 15.50
30 pyridine, C3 C8H11N 21.10
31 imidazole, C4 C7H12N2 15.77
32 pyrazine, C2 C6H8N2 16.43
33 pyrazine, C3 C7H10N2 21.23
34 pyrazine, C4 C8H12N2 25.37
35 pyrazine, C5 C9H14N2 29.50
36 pyrazine, C6 C11H18N2 29.90
37 pyrrolidinone, C2 C6H11NO 26.83
38 piperidinone, C4 C9H17NO 27.23
39 pentanamide, C1 C6H13NO 28.30
40 pyrazine, C6 C10H16N2 33.37
41 imidazole, C3 C6H10N2 31.23
42 pyrazole, C3 C6H10N2 33.23
43 pyrazole, C4 C7H12N2 33.37
44 imidazole, C4 C7H12N2 33.50
45 pyridine, C1 propenyl C10H13N 34.97
46 pyrrolidinone, C2 methylidene C7H11NO 36.18

NO Name Formula Retention time (Min)

1 Undecane C11H24 11.65

2  5-Undecene, (Z) C11H22 11.80

3 3-Dodecene, (Z) C12H24 13.90

4 3-Dodecene, (Z) C12H24 14.05

5 Dodecane C12H26 14.15

6 3-Dodecene, (E) C12H24 14.25

7  3-Dodecene, (Z) C12H24 14.50

8 2-Tridecene, (Z) C13H26 16.30

9 Tridecane C13H28 16.45

10 3-Tridecene, (E) C13H26 16.55

11  3-Tetradecene, (E) C14H28 18.50

13 Tetradecane C14H30 18.65

14  3-Tetradecene, (E) C14H28 19.00

15 Pentadecane C15H32 20.72

16  Hexadecane C16H34 22.70

Table 3: Shows Aliphatic compounds identified in BAW.
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biomass was remained the same while catalyst (CaO) was varying to 
choose a suitable ratio of catalyst with biomass at which maximum 
pyrolysis yield while less amount of residue is obtained. At different 
ratio of CaO and biomass the pyrolysis reactions were carried out, 
finally 3:1 of biomass and CaO respectively were found proper for a 
good pyrolysis yield (Figures 10-12).

Conclusions
After different process and analyzing techniques, more than 

120 compounds were detected in the BAW. Among them, aromatic, 
aliphatic and cyclic hydrocarbons, especially alkanes, alkenes and 
benzene containing compounds were dominant but other important 
compounds like phenol were also present. A laboratory scale effort 
is made in this work to recover phenol from BAW, however, to 
improve efficiency, this process can be successfully applied in large-
scale operations because phenol is an important compound used in 
the preparation of resins, dyes, explosives, lubricants, pesticides and 
plastics. It is indirectly useful in the preparation of plywood. Phenol 

NO Name Formula Retention time (min)
1 Benzene, 4-ethenyl-1,2-dimethyl C10H12 12.65
2 1H-Indene, 2,3-dihydro-5-methyl  C10H12 12.90

3 7-Methyl-1,2,3,5,8,8a-
hexahydronaphthalene C11H16 13.00

5 2-Methylindene  C10H10 13.10
6  Benzene, pentyl C11H16 13.13
7 Naphthalene, 1,2,3,4-tetrahydro  C10H12 13.25
8 Benzene, (1-methylbutyl)  C11H16 13.38
9 Naphthalene C10H8 13.75

10 2-Ethyl-2,3-dihydro-1H-indene C11H14 14.95
11 Benzene, hexyl  C12H18 15.55
12 Benzene, (1-methylpentyl) C12H18 15.70
13 Naphthalene, 1-methyl  C11H10 16.35
14 1H-Indene, 1-ethylidene C11H10 16.75
15  Benzene, heptyl C13H20 17.90
16 1-Methyl-2-n-hexylbenzene C13H20 18.00
17  Naphthalene, 2-ethyl C12H12 18.60
18 Naphthalene, 1,7-dimethyl C12H12 19.15
19 n-Nonylcyclohexane  C15H30 21.80

Table 4: Shows Aromatic compounds identified in BAW.

Different Classes of compounds

% Area

BLTP BHTP

Alcohols 0.889 11.110

Aldehydes 0.501 1.123

Ketones 7.02 25.827

Ethers n.d. 6.263

Esters n.d. 1.923.

Phenols 7.109 4.858

Nitrogenous 0.354 40.779

Aromatics hydrocarbons 33.001 2.246

Cyclic hydrocarbons 17.420 3.096

Aliphatic hydrocarbons 35.121 0.101

Table 5: % area of deferent classes of compounds identified in BAW.
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is also used as an organic solvent to dissolve other alcohols as well as 
for medicinal purposes. Future work is going to test light fraction (80-
160°C) in diesel engine and heavy fraction (160-240°C) in a jet engine 
by mixing them in normal diesel fuels and aviation fuels respectively 
(Figure 13).
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