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Introduction
We develop a semi-supervised pattern learning method to extract 

drug-gene relationships from free text. Central to our approach is 
the observation that: the semantic relationship between a drug and a 
gene can be expressed in many different ways due to the flexibility and 
expressive nature of human natural language. However, these patterns 
are not randomly distributed and there are predominant patterns 
people use to describe specific types of drug-gene relationships. For 
example, pattern “DRUG is metabolized by GENE” is typically used 
to describe metabolism relationship between a drug and a gene. 
Example sentences include “Quetiapine is metabolized by CYP3A4 
and sertindole by CYP2D6” (PMID 10422890), and “Cerivastatin is 
metabolized by CYP2C8 and CYP3A4, and fluvastatin is metabolized 
by CYP2C9” (PMID 17178259). On the other hand, pattern 
“GENE inhibitor DRUG” is typically used to express the inhibition 
relationships between a drug and a gene.Example sentences include “In 
addition, the effect of the CYP2C9 inhibitor fluvastatin was evaluated 
using S-warfarin as a probe” (PMID 16758259) and “The CYP2C8 
inhibitor gemfibrozil does not increase the plasma concentrations of 
zopiclone” (PMID 16832679). In this paper, we use two seed patterns 
for two types of drug-gene relationship extraction: seed “DRUG 
is metabolized by GENE” for drug-gene metabolism relationship 
(i.e. quetiapine-CYP3A4, cerivastatin-CYP2C8) extraction and the 
seed “GENE inhibitor DRUG” for drug-gene target relationship (i.e. 
fluvastatin-CYP2C9, gemfibrozil-CYP2C8) extraction. First, we use 
the seed patterns to find their associated drug-gene pairs. Then we 
iteratively learn new patterns that are associated with the extracted 
drug-gene pairs and extract corresponding drug-gene relationships 
from the newly discovered patterns. The iterative process stops when 
no additional good patterns are found.

Different person responds differently to the same drug. Genetic 
factors account for 20 to 95 percent of the drug response variability [1]. 
Pharmacogenomics (PGx) is the study of how human genetic variations 
affect an individual’s response to drugs, with focuses on drug metabolism, 
absorption, distribution and excretion. Understanding of the genetic 
variants associated with various drug responses is an essential step of 

personalized medicine [2-4]. PGx research is a knowledge intensive 
field and its goal is to discover new knowledge and put it to clinical uses 
for disease treatment. In this field, the research focus is rapidly shifting 
from studying individual entity (e.g. diseases, drugs, genes, phenotypes) 
to entire networks of many different biological entities. Computational 
analysis of the knowledge represented in biomedical networks can 
uncover important new relationships, generate novel testable hypotheses 
and provides new insight into biological systems. Systems biology 
methods for examining drug response with a more network-based view 
of the genes involved in complex drug responses have been recently 
investigated [5,6]. The success of computational PGx studies largely 
depends on the availability of accurate, comprehensive and machine 
understandable knowledge. Adequate knowledge acquisition and 
integration are therefore becoming fundamentally important for these 
studies. The volume of published biomedical research, and therefore the 
underlying biomedical knowledge base, grows exponentially. Currently, 
more than 22 million biomedical records are available on MEDLINE, 
an excellent source of drug-gene relationship knowledge. Clearly with 
the current rate of growth in published biomedical research, it becomes 
increasingly likely that important knowledge connecting drugs, genes 
and diseases is being missed. 

There are substantial research efforts in constructing PGx-specific 
drug-gene relationship knowledge bases using both manual and 
automatic approaches. Biocuration is the activity of transforming 
the information buried in human natural language into machine 
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understandable knowledge by curators reading scientific reports 
and extracting knowledge from published literature [7]. Biocuration 
has become an essential part of biological discovery and biomedical 
research. Substantial manual curation efforts have been used to extract 
PGx knowledge from literature. For example, The Pharmacogenomics 
Knowledge Base (PharmGKB) currently is the largest manually created 
resource about how variation in human genetics leads to variation in 
response to drugs [8]. However, to extract biomedical information 
from published literature manually and to transform it into machine 
understandable knowledge is a difficult task, since biomedical 
terminologies and knowledge are huge, dynamic, diversified and 
complex. In addition, human curators are liable to error and subjective 
bias. Therefore, any manually curated terminology and knowledge base 
is deemed to be incomplete [9]. Automated information extraction 
of structured knowledge from natural language text is important for 
biomedical researchers to find up-to-date knowledge from published 
scientific reports.

Developing automatic approaches to extract PGx drug-gene 
relationships from free text is an active research area.Hahn et al have 
recently surveyed the state of the art in mining the pharmacogenomics 
literature [10]. In general, statistical learning, machine learning, rule-
based approaches and natural language processing (NLP) methods 
have been used [11-19]. Recently, we have developed a knowledge-
driven approach to extract PGx-specific drug-gene pairs from 20 
million MEDLINE abstracts using known drug-gene pairs available in 
PharmGKB as prior knowledge to implicitly classify sentences before 
relationship extraction. We have demonstrated that the conditional 
drug-gene relationship extraction approach significantly improves the 
precision and the F1 measure when compared with the unconditioned 
approach [18]. We also developed an iterative learning approach 
to iteratively extract and rank drug-gene pairs according to their 
relevance to drug pharmacogenomics [19]. That study was based on 
the assumption that PGx-specific drug-gene pairs are often clustered 
together in a sentence. If we start with a known PGx-specific pair such 
as warfarin-CYP2C9, it is likely that sentences containing this pair are 
also PGx-specific. The other drug-gene pairs extracted from these PGx-
related sentences are likely PGx-specific. The likelihood increases as the 
relatedness of the sentences increases, which depends on the relatedness 
of other drug-gene pairs in it. 

Approach
Extracting PGx-specific drug-gene relationships from free text is 

challenging. Firstly, there are different types of drug-gene relationships. 
Two main types are drug-gene metabolism relationship and drug-gene 
target (inhibition or induction) relationship. The semantic relationship 
between drug diclofenac and gene CYP2C9 is related to metabolism as 
shown in below sentences.

1.	 The relationship between gemfibrozil and gene CYP2C8 is 
related to drug inhibition.

2.	 The relationship between gene CYP3A4 and drugs rifampin, 
carbamazepine, omeprazole, phenobarbital, and phenytoin is 
related to drug induction.

3.	 Note that all three genes mentioned above are PGx-related 
genes: CYP2C9, CYP2C8 and CYP3A4. However, the 
relationships between PGx-specific genes and drugs are not 
necessarily restricted to drug metabolism.

1.	 “Evidence exists to suggest that diclofenac is metabolized by 
CYP2C9” (PMID 10853880).

2.	 “The CYP2C8 inhibitor gemfibrozil does not increase the 
plasma concentrations of zopiclone” (PMID 16832679).

3.	 “LIPA metabolism in human hepatocytes was found to be 
induced by the treatment of human hepatocytes with the 
prototypical CYP3A4 inducers rifampin, carbamazepine, 
omeprazole, phenobarbital, and phenytoin but not by the 
CYP1A2 inducer 3-methylcholanthrene” (PMID 19451401).

As shown in above three sentences, it is challenging for many 
statistical approaches to differentiate the drug-gene metabolism 
relationship from drug-gene target (inhibition or induction) 
relationships. However, as shown in above sentences, researchers often 
use specific textual patterns, such as “DRUG is metabolized by GENE”, 
“GENE inhibitor DRUG” or “GENE inducers DRUGs”, in describing the 
relationships between drugs and genes. Even though there exist many 
textual patterns specific for drug-gene semantic relationships, manually 
identifying these patterns will be challenging. In this study, we use one 
specific seed pattern to iteratively find and rank other patterns that are 
similar to the seed pattern. Then using the newly learned textual patterns, 
we extract their associated drug-gene pairs from MEDLINE sentences. 
The process is semi-supervised since it requires no additional domain 
knowledge except the seed pattern, therefore maximally reducing the 
labor-intensive annotation effort required in many supervised machine 
learning approaches in extracting biomedical relationships from free 
text.

Data and Methods
Local MEDLINE search engine

For the text corpus, we used 20 million MEDLINE abstracts (around 
100 million of sentences) published from 1965 to 2010. We downloaded 
the MEDLINE data from the U.S. National Library of Medicine (http://
mbr.nlm.nih.gov/Download/index.shtml). We used the publicly 
available information retrieval library Lucene (http://lucene.apache.
org) to create a local MEDLINE search engine with index created on 
sentences. Sentences were annotated with any drug terms or gene terms 
using the following drug lexicon and gene lexicon.

Drug lexicon and gene lexicon

Both the drug lexicon and gene lexicon were obtained from 
PharmGKB. We downloaded a total of 10,898 drug-gene pairs from 
PharmGKB (data accessed in 10/2010). Our drug lexicon was consisted 
of 918 drugs appeared in PharmGKB drug-gene pairs. The gene lexicon 
was consisted of 2,388 genes from the drug-gene pairs in PharmGKB. 
The reason of using drugs and genes from PharmGKB is that we will 
use the drug-gene pairs from PharmGKB as performance comparison 
in the subsequent relationship extraction. Using the same drugs and 
genes will allow for direct comparison.

Semi-supervised drug-gene relationship extraction: The semi-
supervised drug-gene relationship extraction algorithm is depicted in 
Figure 1 and can be formulated as follows:

Given: (1) a seed pattern such as “DRUG is metabolized by GENE” 
or “Drug inhibitor GENE”, where DRUG and GENE are terms from the 
input drug lexicon and gene lexicon; (2) a text corpus of MEDLINE 
sentences; (3) a drug lexicon and a gene lexicon.

Do: starting from the seed pattern, which represents a typical 
way of expressing specific drug-gene semantic relationship, iteratively 
discover new patterns (“Pattern Extraction”) and extract new pairs with 
newly discovered patterns (“Pair Extraction”). The iterative process 
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drug-gene metabolism relationship and drug-gene target (inhibition) 
relationship. For each relationship, we selected the two top-ranked 
patterns and extracted their associated drug-gene pairs from 
MEDLINE.For each pattern, we retrieved their corresponding 
MEDLINE sentences and manually examined the correctness of drug-
gene relationships using these sentences as evidences. Three evaluators 
with graduate degrees in biomedical science performed the manual 
evaluation.The drug-gene pairs that all three evaluators agreed upon 
were determined as assigned as true positive.

Results
Many top patterns associated with drug-gene pairs in PharmGKB 

are not necessarily specific for PGx-specific relationship.

To get an empirical sense of the variability of natural language used 
to express pharmacogenomic drug gene relationships in MEDLINE, 
we studied lexical textual patterns associated with drug-gene pairs in 
PharmGKB. We used the drug-gene pairs in PharmGKB as queries to 
the local MEDLINE search engine. We then extracted the text string 
between the drug-gene pairs. We counted the number of drug-gene 
pairs that were associated with each of the patterns. Among all 10,898 
drug-gene pairs from PharmGKB, only 2,596 have even co-occurred 
in MEDLINE sentences. Figure 2 shows the top-50 ranked patterns 
in the format of “DRUG pattern GENE”, where DRUG-GENE pair is 
from PharmGKB and DRUG is in front of the GENE.Examples include 
“DRUG (GENE”, “DRUG and GENE” and DRUG, GENE”. Figure 
3 shows the top-50 ranked patterns in the format of “GENE pattern 
DRUG”, where DRUG-GENE pair is from PharmGKB and GENE is 
in front of the DRUG. Examples include “GENE (DRUG”, “GENE by 
DRUG” and “GENE and DRUG”.

Several observations can be made from Figures 2 and 3. First, most 
of the textual patterns associated with drug-gene pairs from PharmGKB 
are highly specific and were associated one drug-gene pair. For example, 
using drug-gene pairs from PharmGKB as search queries, we extracted 
a total of 34,141 textual patterns that were in the format “DRUG pattern 
GENE”. Among them, 33,488 (98%) patterns were only associated with 
one drug-gene pair in MEDLINE. Similarly, a total of 41,468 patterns 
in the format “GENE pattern DRUG” were extracted, among which 
40,656 (98%) patterns were associated with only one drug-gene pair. 

Second, many of the top-ranked patterns (patterns that were 
associated with many drug-gene pairs from PharmGKB) are in fact 
not PGx-specific patterns, such as “DRUG and GENE” or “DRUG 
(GENE)”. Third, the drug-gene pairs from PharmGKB are of many 
different semantic types, including both drug-gene metabolism 
relationship and drug-gene target relationship. For example, the top 9 
pattern (“GENE inhibited DRUG”) and the top10 pattern (“GENE, an 
inhibitor for DRUG”) in Figure 2 are patterns specific for drug-gene 
target relationship. However, these patterns were associated with many 
drug-gene pairs from PharmGKB, which is primarily a knowledge base 
for PGx-specific drug-gene pairs. Finally, as seen from both figures, 
there exist some representative patterns among top-ranked patterns, 
implying that researchers indeed used specific patterns to describing 
drug-gene semantic relationships, which is the critical assumption for 
our pattern-based relationship extraction approach. 

Semi-supervised pattern learning approach is able to find specific 
patterns for drug-gene relationships.

In this study, we learned two different types of patterns: patterns 
specific for drug-gene metabolism relationship and patterns specific 
for drug-gene target relationship. The two seed patterns for drug-gene 

stops when no significant number of new patterns is discovered (two 
iterations in this study). We then rank extracted patterns, and rank 
extracted pairs.

Pair Extraction Seed pattern or textual patterns extracted from the 
previous iteration were used as search queries to the local MEDLINE 
search engine. Sentences that contain these patterns were retrieved. We 
extracted drug-gene pairs from the retrieved sentences if the drug-gene 
pairs and the textual pattern followed the following format: “DRUG 
pattern GENE” or “GENE pattern DRUG”, wherein DRUG and GENE 
are from the lexicons. For example, the seed patterns we used for drug 
metabolism relationship extraction were “DRUG is metabolized by 
GENE” and “GENE substrate DRUG”. The seed patterns for drug gene 
inhibition relationship extraction were “DRUG inhibited GENE” and 
“GENE inhibitor DRUG”.

Pattern Extraction Drug-gene pairs extracted from previous 
iteration were used as search queries to the local MEDLINE search 
engine. Corresponding sentences were retrieved. Textual patterns 
between a drug and a gene were extracted if drug-gene pairs and the 
pattern conformed to the following format: “DRUG pattern GENE” or 
“GENE pattern DRUG”, where the pattern was the search query. The 
iterative pair extraction and pattern extraction process ran until no 
significant number of new patterns was discovered (two iterations in 
this study).

Pattern Ranking After the iterative pattern extraction and pair 
extraction step, we ranked extracted patterns in order to find PGx-
specific textual patterns. Each pattern was ranked based on how similar 
its output (its associated drug-gene pairs) was to the output of the eed 
pattern. Using the output of the seed pattern (p0) as gold standard, 
we developed three pattern-ranking algorithms: (1) Precision-based 
ranking, wherein patterns were ranked based on pattern specificity; (2) 
Recall-based ranking, wherein patterns were ranked based on pattern 
generality; and (3) F1-based pattern ranking algorithm, wherein both 
pattern specificity and generality were taken into account. We define 
ins(p) to be the set of pairs matched by pattern p, and the intersection 
ins(p) ∩ ins(p0) as the set of pairs matched by both pattern p and see 
pattern p0. Then the Precision-based, Recall-based, and F1-based 
ranking pattern ranking scores are defined as below:

Pair Ranking After pattern ranking, we then ranked extracted pairs 
based on their associated pattern scores and their frequency counts in 
MEDLINE. A reliable D1->D2 pair is one that is associated with reliable 
patterns many times. The ranking score of a pair is defined as following: 
where the score of its associated patterns and the number of times that 
the pair is associated with the pattern. 

Evaluation
In this study, we have extracted two types of drug-gene relationships: 

“DRUG is metabolized by
GENE”

Drug
Lexicon

Gene
Lexicon

Pair Extraction

Pattern Ranking Pair Ranking Drug-Gene Pairs

Pattern
 Extraction

MEDLINE
Sentences

Figure 1: The semi-supervised pattern-learning approach for extracting PGx-
specific drug-gene relationship from MEDLINE.
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metabolism-specific relationship extraction are “DRUG is metabolized 
by GENE” and “GENE substrate DRUG”. The two seed patterns for 
drug-gene target-specific relationship are “DRUG inhibited GENE” 
and “GENE inhibitor DRUG”. After two iterations, we ranked extracted 
patterns using three pattern-ranking approaches: the Precision-based 
approach, the Recall-based approach and the F1-based approach. By 
comparing the top-ranked patterns by each of these approaches, we 
found out that the F1-based approach worked better than the other two 
in ranking patterns with both good precision and recalls highly among 

all patterns. The Precision-based patterns tended to rank very specific 
patterns (patterns associated with only one drug-gene pair) highly, 
while the Recall-based approached worked the opposite way in ranking 
many overly general patterns highly. 

The top 10 ranked patterns for drug-gene metabolism relationships 
using seed pattern “DRUG is metabolized by GENE” and “GENE 
substrate DRUG” are shown in Table 1. The pattern ranking orders were 
determined by the F1-based ranking approach. Metabolism-specific 
patterns are highlighted. As shown in the table, starting with one seed 
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Figure 2: Top 50 textual patterns (“DRUG pattern GENE”) associated with drug-gene pairs from PharmGKB. X-axis shows one of the top 50 ranked textual patterns. 
Y-axis represents the number of distinct drug-gene pairs (from PharmGKB) associated with each pattern.
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pattern, our iterative pattern extraction and pattern ranking approaches 
were able to rank many metabolism-specific patterns highly among all 
extracted patterns. Note that many of these patterns don’t necessarily 
following specific syntactic patterns.

The top 10 ranked patterns for drug-gene target-specific 
relationships using seed pattern “DRUG inhibited GENE” and “GENE 
inhibitor DRUG” are shown in Table 2 with target-specific patterns 
highlighted. As shown in the table, starting with one seed pattern, our 
iterative pattern extraction and pattern ranking approaches were able 
to rank many drug-gene inhibition-specific patterns highly among all 
extracted patterns. As seen in the table, many patterns such as “DRUG 
inhibited GENE” and “DRUG inhibits GENE” can be combined to 
significantly reduce the number of patterns.

IN summary, the semi-supervised pattern-learning approach 
starting with one single seed were able to automatically find patterns for 
specific drug-gene semantic relationships. In addition, these patterns 
were associated with more drug-gene pairs than those included in 
PharmGKB, therefore we can used these newly learned patterns to 
extract additional drug-gene pairs from MEDLINE. For example, a 
total of 34 drug-gene pairs from PharmGKB were associated with 
pattern “GENE substrate DRUG” (Figure 2). However, when using the 
pattern “GENE substrate DRUG” as search query, we extracted a total 
of 50 distinct drug-gene pairs from MEDLINE sentences, among which 
only 34 pairs were included in PharmGKB.

Pattern-based drug gene relationship extraction 

We selected four sets of specific patterns from the top-ranked 
patterns and used these selected patterns to extract drug-gene pairs 
from MEDLINE. We selected six metabolism-specific patterns in the 
format of “DRUG pattern GENE” from top-ranked patterns for seed 
“DRUG is metabolized by GENE”. These six patterns are “DRRUG 
is metabolized by GENE”, “DRUG metabolism by GENE”, “DRUG, 
a substrate for GENE”, “DRUG is a substrate for GENE”, “DRUG is 
metabolised by GENE”, and “DRUG is metabolized primarily by”. These 
six patterns were associated with a total of 76 drug-gene pairs.We also 
selected 10 metabolism-specific pairs in the format of “GENE pattern 
DRUG” from top-ranked patterns for seed “GENE substrate DRUG”. 
These patterns were associated with 124 drug-gene pairs. Similarly 
for target-specific patterns, we selected 12 patterns from top-ranked 
patterns for seed “DRUG inhibited GENE” and these patterns were 
associated with a total of 832 drug-gene pairs. We selected 10 patterns 
for seed “GENE inhibitor DRUG”, which were associated with a total 
of 193 drug-gene pairs. For each set of patterns, we manually evaluated 
the precision of the extracted pairs and calculated how many of these 
extracted pairs were not included in PharmKGB.

As shown in Table 3, all four set of selected patterns were highly 
precise (precision ranging from 0.96 to 1.00) in extracting drug-gene 
pairs from MEDLINE. In addition, many of these pairs were not 
included in PharmGKB. Examples of extracted drug gene metabolism 
pairs that were not in PharmGKB included sudofetilide-CYP3A4, 
eplerenone-CYP3A4, estradiol-CYP3A4, ganciclovir-ABCG2, 
lidocaine-CYP3A, and terfenadine-CYP2C9. Note that recalls were not 
calculated. First, there is no good standard that represents all drug-gene 
pairs that appeared in MEDLINE. Second, the main goal of this study 
was to demonstrate that the semi-supervised pattern learning approach 
is able to accurately extract many additional drug-gene pairs that have 
not included in the currently most comprehensive PGx-specific drug-
gene relationship knowledge base. Unlike many supervised machine 
learning approach, the semi-supervised learning approach required 

only a single seed pattern, therefore maximally minimized the human 
curation effort involved.

Some of the false positives are caused by gene symbol ambiguity. 
For example, incorrect pair glucose-MRS was extracted from sentence 
“Also the study of cerebral glucose metabolism by MRS is very 
promising, allowing a resolution and sensitivity comparable to PET” 
(PMID 9029941), where MRS is not a gene symbol. In this sentence, 
it represents “magnetic resonance spectroscopy”. For the same 
reason, false pair glucose-DO was extracted from sentence “Pyrroline 
carboxylate reduced [5-3H] glucose metabolism by DO…” (PMID 
10330104), where DO represent “denuded oocytes”, not gene. Therefore, 
to further improve the precision of our methods, gene disambiguation 
is necessary.

Discussion and Conclusions
We have developed an iterative pattern learning approach for 

extracting precise drug gene relationships from free text. Our method 
achieves high precision in extracting specific types of drug gene 
semantic relationships. In addition, our method is able to extract many 
drug gene relationships currently not included in PharmGKB. One of 
the advantages of our method is that it is highly efficient and does not 
involve sentence parsing, therefore avoiding many errors introduced by 

Rank “DRUG is metabolized by GENE” “GENE substrate DRUG”
1 “DRUG is metabolized by GENE” “GENE substrate DRUG”
2 “DRUG is metabolised by GENE” “GENE mediated DRUG”
3 “DRUG is metabolized GENE” “GENE catalyzed DRUG”
4 “DRUG metabolism by GENE” “GENE substrates DRUG”
5 “DRUG, a substrate for GENE” “GENE dependent DRUG”
6 “DRUG, which is GENE” “GENE activity (DRUG”
7 “DRUG in relation to GENE” “GENE genotype and DRUG”
8 “DRUG on the activity of GENE” “GENE probe drug DRUG”
9 “DRUG oxidation (GENE” “GENE substrates such as DRUG”
10 “DRUG is substrate for GENE” “GENE activity as DRUG”

Table 1: Top 10 ranked patterns (as determined by the F1-based ranking)using 
seed patterns “DRUG is metabolized by GENE” and “GENE substrate DRUG”.

Rank “DRUG inhibited GENE” “GENE inhibitor DRUG”
1 “DRUG inhibited GENE” “GENE inhibitor DRUG”
2 “DRUG inhibits GENE” “GENE inhibitor, DRUG”
3 “DRUG decreased GENE” “GENE inhibitors DRUG”
4 “DRUG, an inhibitor of GENE” “GENE) inhibitor DRUG”
5 “DRUG reduced GENE” “GENE inhibitors, DRUG”
6 “DRUG on GENE” “GENE inhibition by DRUG”
7 “DRUG suppressed GENE” “GENE inhibitor (DRUG”
8 “DRUG induced GENE” “GENE inhibitors such as DRUG”
9 “DRUG inhibition of GENE” “GENE inhibition with DRUG”
10 “DRUG, a potent GENE” “GENE) inhibitors DRUG”

Table 2:  Top 10 ranked patterns (as determined by the F1-based ranking) using 
seed patterns “DRUG inhibited GENE” and “GENE inhibitor DRUG”.

Relationship Pattern Pairs (n) Precision Pairs not in 
PharmGKB (n)

Metabolism
“DRUG pattern GENE” 76 0.973 14

“GENE pattern DRUG” 124 1.000 28

Target
“DRUG pattern GENE” 832 0.961 708

“GENE pattern DRUG” 193 1.000 116

Table 3:  Precision of four sets of selected patterns in extracting drug-gene pairs 
from MEDLINE and the numbers of additional pairs extracted compared to ones 
in PharmGKB.
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parsing complicated biomedical text. However, there is still significant 
space in which to seek improvement in increasing the coverage of 
methods and the quality of our patterns.	

First of all, the pattern-based approach only worked on extracted 
drug-gene pairs that co-occurred in the sentences. Pairs that appeared 
in abstracts but not in sentences will be missed. Even though important 
drug-gene pairs often appeared in the same sentences, there will be pairs 
only appeared in abstracts. Second, our study only used the abstracts, 
not the full-text. Even though many of full-text articles related to 
pharmacogenomics are often not publically available, they may contain 
richer set of information. It will be interesting to systematically compare 
drug-gene pairs that appeared in abstracts to those that appeared in the 
full-text articles for the same set of abstracts. Third, our restriction on 
patterns (“DRUG pattern GENE” or “GENE pattern DRUG”) limited 
the space of patterns that we could potentially examine. In some cases, 
it is necessary to consider patterns before and after drug or gene entities, 
in the format “pattern DRUG pattern GENE” or “DRUG pattern GENE 
pattern” or “pattern DRUG pattern GENE pattern”. For example, in 
sentence “R(+)XK469 inhibits hydroxylation of S-warfarin by CYP2C9” 
(PMID 19464879). Pattern “hydroxylation of DRUG by GENE’ is a 
highly precise pattern for drug gene metabolism relationship. However, 
as the amount of data increase, the relationships will appear with typical 
pattern in the format of “DRUG pattern GENE” as shown in sentence 
“OBJECTIVE: The aim of this study was to determine whether folic 
acid supplementation increases the dosage requirement of the CYP2C9 
substrate warfarin” (PMID 20206792). To learn more complex patterns 
such as “pattern DRUG pattern GENE” or “DRUG pattern GENE 
pattern” or “pattern DRUG pattern GENE pattern”, parsing will be 
needed since our methods cannot decide the boundaries of the prefix 
and postfix patterns.

Some of the patterns in the tail have very typical syntactic feature. 
For example in sentence “Warfarin, the principal oral anticoagulant 
used in the treatment and prevention of thromboembolic disease, 
is primarily metabolized by CYP2C9” (PMID 15341704), there is a 
common syntactic pattern “DRUG is metabolized by GENE” while the 
lexical pattern, “the principal oral anticoagulant used in the treatment 
and prevention of thromboembolic disease, is primarily metabolized 
by” occurs only once in MEDLINE. Our method can be combined with 
NLP-intensive method to further improve recall. Pattern generalization 
would significantly fatten the head; however, we believe that no amount 
of generalization will eliminate the tail.

Our method is simple and will miss some drug gene pairs. However, 
as the corpus of literature increases, redundancy will increase the 
likelihood of a drug gene pair being matched by a simple lexical pattern. 
The rapid growth of biomedical knowledge and literature, which makes 
automatic extraction of drug gene relationships necessary, can also act 
to increase its coverage over time. Although our ultimate goal would be 
to be able to reliably reproduce the relationship annotations provided 
by human, in practice we do not expect automatic tools to be able to 
fully replace the work of human curators. When automatic methods are 
intelligently combined with human curation process, they can reduce 

curators’ workload and bias, and increase the completeness and recency 
of manually curated pharmacogenomics knowledge base.
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