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ABSTRACT

Recent literature has highlighted the security risks to human research subjects forfeiting sensitive genomic data 
to public reference panels. Such breaches to subject privacy may occur even in largescale biomedical analyses like 
genotype imputation, a preliminary stage of many clinical studies. To this end, we introduce Secure Haplotype 
Imputation Employing Local Differential Privacy (SHIELD). As a server-side pipeline, it combines the differentially 
private randomized response mechanism and the standard forward-backward algorithm to compute a Markov 
random field over incomplete genomic datasets submitted by client researchers. Critically, we show that SHIELD 
achieves modern imputation accuracy well within typical privacy budgets, providing mathematically provable privacy 
guarantees to reference panel donors without sacrificing client utility. We conclude that developing practicable, 
differentially private workflows individual methods in several domains of genomic research. 

Key words: Secure Haplotype Imputation Employing Local Differential Privacy (SHIELD) program; Genomic 
privacy risks; Imputation algorithms in genetics; Haplotype reference panel; Genomic medicine

INTRODUCTION

Just as the additional of novel biomedical technologies has grown 
with the rapid development of genomic medicine over the past 
decade, so too have the privacy risks for human subjects volunteering 
sensitive data to academic or corporate researchers. Ever larger 
datasets like the UK Bio bank (UKB), all of us research program, 
Haplotype reference consortium, and 1,000 genomes project 
(1KG) render genomic and in-depth Protected Health Information 
(PHI) on hundreds of thousands of participants widely available 
to approved institutions [1-4]. The rising popularity of consumer 
sequencing services like 23 and the opportunity, Ancestry DNA, and 
family tree DNA have resulted in the corporate data mining of the 
results from millions of test kits across a number of populations [5-
7]. Likewise, cloud-based platforms like Terra, Google’s Cloud Life 
Sciences API, and IntelliSpace Genomics tremendously facilitate 
the maintenance, cleaning, and processing of large datasets in 
standardized and reproducible workflows, further accelerating the 
proliferation of private data collected for biomedical studies [8-10]. 

In order to protect patient privacy, protocols like those stipulated by 
the Health Insurance Portability and Accountability Act (HIPPA) 
of 1996 have been enacted to restrict the distribution of Personally 

Identifiable (PID) information and PHI [11]. However, as part of 
a growing literature on privacy concerns in genomic research, it 
has also been documented that coordinated attacks on the part of 
cryptographic adversaries are capable of compromising the privacy 
of research subjects that donate to public datasets even when such 
procedures are followed and PID is made inaccessible [12-15]. 
Reconstruction attacks that divulge the contents of an otherwise 
private database are in fact possible in nearly any scenario in 
which researchers are able to request statistical estimates of sample 
parameters [16]. In brief, such attacks are made possible by the 
fact that a malefactor may make a carefully coordinated series of 
queries to reconstruct the contents of a target dataset with arbitrary 
accuracy. Specifically, in a genomic context, law enforcement 
authorities have exploited consumer genomic databases to identify 
distant familial relatives of suspects in what has been shown to 
be a highly effective statistical attack [17]. Other researchers have 
demonstrated that short tandem repeats on the Y-chromosome of 
targets can be cross-referenced with publicly available genealogy data 
to, in combination with other demographic information, reliably 
identify individuals [18]. Such risks occur even when targets exist in 
the midst of massive datasets; forensic techniques have been shown 
to detect the presence of individuals in highly complex DNA 
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mixtures in which less than 0.1% of the total genomic material is 
contributed by the target [15]. 

 Among the many components of typical genomic workflows, 
imputation constitutes one of the most common applications of 
public data in which repeated queries are made to a single database, 
thereby enabling reconstruction attacks and other privacy breaches. 
Because whole-genome sequencing remains prohibitively expensive 
for existing high-throughput technology, array-based genotyping 
platforms provide a more efficient method of collecting data for 
large-scale studies of human disease. This comes at the expense of 
the statistical power of Genome-Wide Association Studies (GWAS) 
that intend to fine-map causal variants or facilitate meta-analyses, 
necessitating a preliminary stage in which an imputation algorithm 
infers the genotype for a given target genome at loci that have not 
been directly assayed, essentially expanding the dimensionality 
of the original dataset [19-31]. Employing a reference panel of 
donated haplotypes sequenced via higherquality technology and 
at a far denser set of variants, imputation algorithms like MaCH, 
Minimac, BEAGLE, PLINK, fastPHASE, and IMPUTE have been 
demonstrated to reliably augment both the coverage and statistical 
power of GWAS and hence become an essential component of 
many clinical studies [19-28,32]. An urgent challenge is therefore to 
develop a suite of imputation algorithms that can simultaneously 
facilitate high-utility, statistically reliable GWAS while protecting 
the privacy of contributors to reference haplotype panels [12,33,34]. 

One solution to security concerns in imputation and other stages of 
genomic research is the technique of differential privacy, which has 
rapidly become the “gold-standard” for statistical queries by being 
able to provide both robust privacy guarantees for participants in 
studies and meaningful results for researchers in commercial and 
scientific settings [35-37]. At the crux of the technique is a rigorous 
mathematical formalization of privacy that quantifies the extent to 
which adding pseudorandom noise to the results of computations 
can protect the anonymity of members of a database [38]. 

The following work introduces Secure Haplotype Imputation 
Employing Local Differential privacy (SHIELD), a program that 
employs the Li-Stephens model of genetic recombination to impute 
missing haplotype variants in target genomes while incorporating 
differential privacy techniques to protect reference panel donors 
[26,39]. Specifically, SHIELD proceeds in two stages: 

(i) Initial input perturbation to guarantee local differential 
privacy via randomized response.

(ii) Fitting a Hidden Markov Model (HMM) to each 
subsequent client query via the forward-backward algorithm [40-
44]. In an experiment that closely simulates a real-world use case 
for haplotype imputation; we show that SHIELD is able to obtain 
stateof-the-art imputation accuracy while providing mathematically 
formalized privacy guarantees. Such results suggest that perturbation 
via differential privacy holds significant promise for straightforward 
inclusion as an unobstructed component of standard genomic 
workflows in which algorithmic accuracy is nonetheless retained.

MATERIALS AND METHODS

Overview

The setting for which SHIELD is intended consists of a client user 
uploading target genomes to a public imputation server [12]. In the 
standard imputation workflow, contributors to a bio bank upload 
their sequenced genomic data to a central, publicly available server, 

where the data are then collated to create a haplotype reference 
panel to pass as an argument to an imputation algorithm [1,3,4]. 
Subsequently, client researchers may then upload target genomes as 
part of a clinical study to the server, where the targets are imputed 
using the private haplotype reference panel and, most often, an 
algorithm based in HMMs and the forward-backward algorithm 
[23,28-31,43,44]. At no point in the workflow is the haplotype 
reference panel directly visible to client researchers submitting jobs 
to the server. However, while the privacy of the contributors to the 
reference panel may appear guaranteed, it has been demonstrated 
that adversarial attacks employing carefully coordinated queries to 
the server can divulge the sequences of reference haplotypes (Table 
1) [12]. To this end, SHIELD modifies the imputation workflow by 
leveraging local [40], differential privacy [35-37,41,45]. Haplotype 
data can be represented as a bit string in which a 1 at the itch 
position in the sequence indicates that the haplotype possesses 
the minor allele at the site and a 0 the major allele [29]. Prior to 
submission to the central imputation server, pseudorandom noise 
is added to the two bitstrings denoting each individual’s pair of 
haplotypes  randomized response, a technique from differential 
privacy that simply consists of flipping a random subset of the bits 
from 0 to 1 and vice versa [41,42]. The likelihood that a given bit in 
the haplotype bitstring is flipped varies as a function of a parameter 
ε called the privacy budget such that lower values of ε entail a 
higher probability that any bit is flipped and therefore a higher 
degree of privacy [38]. The trade-off, however, is that lower privacy 
budgets incur a greater expense to imputation accuracy, rendering 
it a hyper parameter that the database curator must carefully adjust 
to strike an acceptable balance between donor privacy and client 
utility. Once all perturbed haplotypes are collected at the central 
server, imputation is subsequently performed using the modified 
haplotypes as a reference panel.

Table 1: Notation employed in the development of Impute

Notation Significance

0,1, and φ Major allele, minor allele, and 
unobserved site

n and m
Number of reference samples and 

reference markers

[ ]n Set of reference haplotypes

{ } ( ) { }  0,  1     0,  1m n niX and x×∈ ∈ Reference panel in matrix form and 
the values at site i

( ) { }1
  0,  1,   m m

k k
z

=
∈ ∅ Reference panel in matrix form and 

the values at site i

( ) [ ]
1

ˆ ˆ z  0,  1
m m

k k
Z

=
≡ ∈ Observed target haplotype sequence

( ) [ ]
1

ˆ ˆ z  0,  1
m m

k k
Z

=
≡ ∈ Sequence of imputed haplotype 

dosages

[ ]  my n∈
Site-wise identities of reference 

haplotypes from which
is descended

[ ]  0,  1 mρ ∈ Recombination rates [26,39]

[ ]  0,  1 mµ ∈ Mutation rates [26,39]
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[ ] [ ]1 2, , . . . . , 0,1 m n
mM m m m Τ ×= ∈ Emission probabilities

[ ] { }1 2  ,   ,  . . . ,   0,  1 m n
mγ γ γ Τ ×Γ = ∈ Posterior probabilities for haplotype 

identity

[ ] { }1 2  ,  ,  . . . ,   0,  1 m n
mA α α α Τ ×= ∈ Forward probabilities [44], for 

haplotype identity

[ ] { } 
1 2   ,   ,  . . . ,   0,  1  m n

mB β β β Τ ×= ∈ Backward probabilities [44], for 
haplotype identity

Privacy is guaranteed by the fact that no contributor’s data will, on 
average, be unmodified when input to the imputation algorithm 
invoked by client researchers. In this way, no adversary could be 
certain that the results that they obtain from an attack accurately 
reflect the true reference panel. These privacy guarantees are also 
local; even if an adversary were to access the reference panel directly 
rather than through coordinated queries, the data obtained would 
again not perfectly reflect any individual’s true genome [45]. The 
SHIELD algorithm consists of two subroutines, perturb and Impute 
that are described below. The former is called once on a reference 
panel X to produce a locally differentially private reference panel 
X  that is stored on the imputation server, whereas the latter is 
then called by the client for each subsequent query haplotype ( ) 1

 m
k k

z
=  

using X  as the reference panel [35–38,40]. We outline the latter 
first before proving the fact that SHIELD satisfies the stipulations 
of differential privacy.

HMM-based genotype imputation

Like many imputation algorithms, SHIELD fits an HMM to 
haplotype queries. For a more detailed discussion on the Li-
Stephens model of genetic recombination and imputation, see Li 
et al. 2003 [39], and Li et al. 2009, [26]; only a brief outline of the 
implementation in SHIELD is provided below. In sum, under the 
Li-Stephens model, target haplotypes are assumed to be mosaics of 
the multiple ancestral haplotypes from which they are descended. 
Two processes are assumed to be responsible for the creation of 
this mosaic, namely mutation and recombination described 
subsequently. 

Given m sites (Table 1), we are given an observed target haplotype 
sequence ( ) 1

m
k k

z
=
 where the kth allele may be either major (0), minor 

(1), or missing (∅). We are given a reference panel X consisting of 
n reference haplotypes. Our goal is to compute the most likely true 
sequence ( ) 1

ˆ m
k k

z
=  that produced ( ) 1

m
k k

z
=  given our reference panel X; 

in other words, we compute the expected value 

( ) [ ]1
ˆ ; , ,m

k k k
E z z k mρ µ

=
 Χ ∀ ∈
   …………………………. (1)

Where, ρ and µ are additional parameters described below. 

The approach of HMM-based imputation is to perform ancestral 
haplotype inference, i.e., to assume that the genetic material at each 
site i descended from an ancestor in the reference panel X, denoting 
the ancestor of the target at the site yi. We therefore compute 
the posterior probability distribution of the random variable γk, 
effectively a vector of probabilities γk such that jth component of 
γk denotes the probability that the ancestor of the target at site i is 
the reference haplotype j:

( )( )1

m
i i k k

P y j zγ
=

= =  …………………………………………. (2)

We stack these distributions for all sites into a matrix Γ. The utility 
of this approach lies in the fact that   is equal to the sum product 
of the posterior probability distribution over the vector of all 

ancestors and each ancestor’s respective allele. Employing the law 
of the unconscious statistician, we may write this equality as an 
inner product: 

[ ( ) ]
1

ˆ ; , ,
m T

i k i ik
E z z µ ρ γ

=
Χ = Χ  …………………………………….(3)

The relationship between consecutive vectors γi and γi+1 are 
described by a Markov random field. Under the Li-Stephens model, 
at each site i, a recombination event might occur, splitting the 
haplotype into fragments descended from two separate ancestors 
and resulting in the inequality yi+1 6= yi. Additionally, a mutation 
event may occur in which the allele possessed by the target may 
differ from the genetic material that it inherited from its respective 
ancestor at i, inverting the expected value. These two events are 
expressed by the probabilities 

( )2 1 2 11i i iP y j y j j jρ = + = = ≠  ………….(4) 
( ) { } [ ], 0,1, ,

ii i j i iP u j u nνµ ν φ= ≠ Χ = ∀ ∈ ∈                    …...........…(5)

Which are concatenated to form the vectors ρ and µ, called the 
recombination and mutation rates, respectively. Note that mutation 
rates are defined for any possible target (vk) m k=1 with any possible 
ancestor ui. To compute the probability ( )6 ,P zi i j yi j= Χ =  for a 
particular (zk) m k=1, we generate a matrix of emission probabilities 
M such that 

{ ,

,

1
,

i i i j

i i i i j

if Z
i j if Z or ZM µ

µ φ
− =Χ

= ≠Χ=  ……………………………………(6)

Reflecting the lack of information provided by a missing site valued 
∅ by defaulting to a uniform vector mi such that [ ],i j i jM nµ= ∀ ∈ . 

The posterior probabilities are computed by dividing them into 
two separate probabilities, known as the forward and backward 
messages and denoted, for the ith site, αi and βi, respectively. 
Loosely speaking, they reflect the information conveyed by the 
subsequences ( ( ) 1

i
k k

z
=  and ( ) 1

m
k k i

z
= + . The forward and backward messages 

are so-called because they are computed via dynamic programming] 
by iterating in opposite directions, that is, by stepping forward left-
to-right along the target and computing α1, α2, . . ., αm and by 
stepping backward right-to-left and computing βm, βm−1, . . ., β1 
[46]. Respectively, the recurrence relations employed are

( )
1

,1

1
11 1 1

ni
i i i j i ij

m
n

α
ρ

α ρ α
=

=
+ + = + Α + − 

 




∑   ……………………………………..(7)

( )1 11, 11

1m

i i i n i j i ijn

m ρ ρ β

β
β  Β + − +∑ + += 

=
=





  ………………………………….(8)

Finally, the forward and backward messages can be multiplied 
together component-wise and then normalized to derive the 
posterior probabilities: 

(   1| ) i i i i iγ α β α β= −  ……………………………(9) 

This gives rise to the final formulation of Impute below, which 
employs matrix-notation for brevity

Algorithm 1: Uses forward-algorithm to impute dosages according 
to Li-Stephens model.

Procedure ( )( )1
IMPUTE ;  ,  ,  m

k
zk X µ ρ

=  

A, B, M ← empty matrices

for i = 1, 2, . . . , m do

for j = 1, 2, . . . , n do

if zi = Xi,j then

Mi,j ← 1 − µi
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else

Mi,j ← µi

end if

end for

end for 

α1 ← 1

for i = 1, 2, . . . , m do

( ),1

11  1  1      n
i i i jj

im A i i
n

ρα ρ α
=

+ + = + + − 
 

∑
 

end for 

βm ← 1

for i = m − 1, m − 2, . . . , 1 do

( )1, 1 11
    1   ni

i i i j i ij
m B

n
ρβ ρ β+ + +=

 = + − 
 

∑
 

end for

Γ← A ◦B

Γ ← Γ(diag (Γ T 1))−1

return  ẑ

end procedure

Differential privacy and randomized response 

We derive the privacy guarantees of SHIELD from the notion of 
differential privacy [35–38]. Preliminarily, we develop the notion 
of neighboring datasets. Given a universe of datasets X, we say 
that two datasets x, y ∈ X are neighbours if and only if they differ 
by at most one individual sample. We will also call a randomized 
algorithm M: X → F, where F is an arbitrary probability space, a 
mechanism. We then say that a mechanism M: X →F satisfies (∈, 
δ)-differential privacy if and only if for all S ⊆ F and for all x, y ∈ X 
such that x are y are neighbouring, we have

( )( ) ( ) ( )( )            P M x S exp P M y Sε δ∈ ≤ ∈ +   …………………………….(10

Among the most common techniques in differential privacy, 
randomized response satisfies ∈- differential privacy for binary 
attributes [41,42]. The randomized response scheme on a binary 
attribute X is a mechanism M

rr
: {0, 1} → {0, 1} characterized by a 2 

× 2 distortion matrix

( )00 01

10 11

p p
p pP =  …………………………………………(11)

Where,

 ( )( ) ( ) { }        ,    0,  1|puv P Mrr xi u xi v u v= = = ∈ . It can be 
shown [41], that the highest-utility value for P is

1
1 1

1
1 1

e
e e

e
e e

P
∈

∈ ∈

∈

∈ ∈

+ +

+ +

 
 =
 
 

 ………………………………….(12)

Fixing the number of samples in our reference panel n and the 
number of sites m, we denote the universe of possible reference 
panels X={0, 1}m×n. Because haplotypes are vector-valued, applying 
the notion of neighboring datasets is non-trivial. For our purposes, 
we will say that two reference panels X, X’ ∈ X are neighbouring if 
and only if their Hamming distance is less than or equal to 1. In 
other words, we consider X and X’ neighbours if and only if Xi,j 
≠X’I,j for a single marker i and a single individual j as opposed to 
a whole-genome interpretation of neighboring datasets in which 

X and X’ may differ by an entire row. It then follows that by 
applying the randomized response mechanism Mrr to each entry 
in a reference panel matrix X, we may store a perturbed copy   of 
the original reference panel that satisfies entry-wise ε-differential 
privacy. The perturbation step of SHIELD then consists of the 

procedure Perturb. We note that we use the symbol  
r
←  to 

denote a pseudorandom sample and Bern (ϑ) to denote a Bernoulli 
distribution with parameter ϑ.

Algorithm 2 

Applies randomized response mechanism to reference panel.

Procedure PERTURB (X; ε)

X̂   ← empty matrix

for i = 1, 2, . . . , n do

for j = 1, 2, . . . , m do

    
1

r ec Bern
e

ε

ε

 
←  +   

if c = 1 then

, ,
ˆ     i j i jX X←  

else

X̂  
i,j
 ← ¬X

i,j

end if

end for

end for

return X̂  

end procedure

A convenient property of differential privacy is post-processing [35]. 
If M: X → F is an (ε, δ)- differentially private randomized algorithm 
and f: F → F’ is an arbitrary mapping, then f ◦ M: X → F’ is 
(ε, δ)-differentially private. This allows us to prove the following 
Theorem 1.

Theorem 1.

Given a reference panel X, pair of indices (i, j), Markov parameters 

ρ and µ, finite set of queries ( )( ) ( )( ) ( )( ){ }1 2

1 1 1
  , ,....,

m m mn
k k kk k k

Z z z z
= = =

= , and 
privacy budget ε>0, the mechanism given by

( ) ( )( ) ( ){ }1 1
, , , :m m

k kk k
M z IMPUTE z X z Zµ ρ

= =
= ∈  ………………………………..(13)

Where,

( )   ;  X PERTURB X ε=  …………………………………..(14)

is ε-differentially private with respect to Xi,j .

Proof. Put

( )'  ( ) ;M U PERTURB U ε=  ………………………….(15)

and

( ) ( )( ) ( ){ }1 1
     , ,  ,   :    m m

k k
f V IMPUTE zk V µ zk Zρ

= =
= ∈  ………………….(16)

We then have M=f ◦ M’. Trivially, M’ satisfies ε-differentially 
private with respect to Xi,j. Because f is deterministic, we are able to 
apply post-processing, from which it follows that M is differentially 
private. Note that because each element of the set returned by f is 
conditioned only on the same output M’, the subroutine Perturb 
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is called once, meaning that we do not consume an additional 
amount of ε (Figure 1).

Case study: 1,000 genomes reference panel 

To evaluate SHIELD’s performance on a realistic simulation of an 
imputation query, we performed an ablation study on the 1KG 
Phase 3 dataset [4]. We withheld 100 genomes (equivalent to 200 
haplotypes) from the reference panel to impute via the remaining 
2,404 samples. The first 10,000 single-nucleotide polymorphisms 
(SNPs) were extracted from 1KG; the remaining were discarded to 
render run times more tractable. To simulate an array-based assay of 
the 200 target haplotypes, we ablated all sites except those included 
in the Illumina Human1M-Duo v3.0 DNA Analysis Bead Chip 
manifest, the intersection of which with the first 10,000 sites in the 
1KG data consisted of a total of 253 sites for an a priori coverage 
of 2.53%. To quantify accuracy, we summed the imputed dosages 
for each pair of haplotypes to compute a final genotype dosage 
for each sample, then computed the coefficient of determination 
(R2) between the genotype dosages and the ground-truth exome 
data. Because sites vary massively by minor allele frequency (MAF), 
the loci were divided into three bins corresponding to MAFs of 
(0%, 0.5%), (0.5%, 5%), and (5%, 50%). Respectively, these bins 
contained 5,943, 2,157, and 1,900 variants in the reference set. 
Accuracy was assessed, by bin, both to compare the performance of 
SHIELD to that of Minimac 3 and to characterize the effect of the 
privacy budget on our method’s accuracy [29].

RESULTS 

Modern imputation accuracy 

Our analyses show nearly identical performance between SHIELD 
and Minimac 3 when no input perturbation is applied, with the 
former obtaining scores of 0.571, 0.784, and 0.902, respectively, 
on the three bins enumerated above and the latter scores of 0.584, 
0.787, and 0.901 (Figure 2). SHIELD’s accuracy was reevaluated 
at various values of our privacy budget along the interval (0.01, 
10), reflecting the typical range of values that ε is assigned in many 
differentially private algorithms [35]. Expectedly, accuracy exhibits 
a negative association with ε. At an upper bound of ε=10, SHIELD 
performs nearly identically to Minimac3 (0.564, 0.784, 0.901), 
while performance degrades significantly at ε = 0.01 (0.014, 0.038, 

modelling genomic recombination, namely the mutation and 
recombination rates, were computed on the unperturbed data by 
Minimac3 [29,39.43].

Noise added to the reference panel appeared to mimic the behavior 
of extremely rapid genomic recombination, causing Minimac3’s 
expectation-maximization procedure to dramatically overestimate 
the recombination rates (5.93 × 10-3 vs. 4.84 × 10-4) and, conversely, 
to underestimate the mutation rates (Figure 3B). These atypical 
rates exerted a decidedly negative impact on imputation accuracy, 
with performance decreasing by 35.5%, 16.1%, and 5.46% for each 
of the three bins, respectively, when the rates were computed on the 
reference panel perturbed at ε=5.0. In sum, it is clearly superior to 
estimate population parameters a priori, although, notably, doing 
so on the reference panel itself is not differentially private and may 
leak information. 

Impact on compression rates 

An additional feature of haplotype imputation introduced by 
Minimac3 was the M3VCF format for genomic data, which both 
substantially decreases total file size over the traditional VCF 
format and enables the state-space reduction technique that further 
improves imputation runtime [29]. The key insight enabling the 
format is the observation that, due to identity-by-descent, most 
haplotypes share identical k-mers of genomic material at intervals 
of contiguous loci despite being unique overall [26]. In other 
words, given an arbitrary interval along the genome, the number of 
unique k-mers collectively exhibited by the reference panel is almost 
always smaller than the total number of reference haplotypes per 
se. Therefore, it is possible to implement a compression scheme 
in which the genome is partitioned into intervals and only the 
unique k-mer strings are retained, substantially compressing 
the original reference panel [29]. An unfortunate consequence 
of local differential privacy via randomized response is that, on 
average, random noise will destroy the exact equality between 
haplotypes substrings. From the perspective of a compression 
algorithm attempting to identify the set of unique k-mers along a 
given interval, an apparently larger number of unique fragments 
will exist, rendering M3VCF-style compression will less efficient. 
As an illustration, we partitioned the genomic data into mutually 
exclusive, exhaustive blocks of uniform size ranging from 2 to 500. 
We then computed the data compression ratio when M3VCF-style 
state-space reduction was applied at each block size by dividing the 
total 5.008 × 108 bits in the uncompressed panel by the number of 
bits following compression and plotted the ratio against block size 
(Figure 3C). Input perturbation resulted in compression rates up to 

Figure 1: Overview of the SHIELD pipeline, with the key algorithms in 
orange. Noise is added once to the reference data (purple) via Perturb, 
then collated and stored on the server to guarantee local DP (modified 
bits in bold). The client (green) then calls Impute on the server with 
the target haplotype (missing sites denoted ∅) and the reference panel 
as arguments.

Figure 2: A) Comparison between the accuracy by MAF of imputed 
dosages for targets withheld from 1KG for both SHIELD (non-
differentially private) and Minimac3. Note: ( ) Client, ( ) 
Biobank, ( ) Impute, ( ) SHIELD, ( ) Minimac3; B) SHIELD’s 
accuracy by MAF versus privacy budget. Note: ( ) [5%, 50%], ( ) 
[0.5%, 5%], ( ) [0%, 0.5%]

0.218) (Figure 3A). 

Impact on Markov parameters

As noted above, the parameters for the Markov random field 

an order of magnitude smaller.
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DISCUSSION 

Though the noise added by some differentially private mechanisms 
may destroy utility entirely, we observe that SHIELD is conveniently 
able to return highly accurate results in spite of its strong privacy 
guarantees [37]. This is likely in part due to the fact that randomized 
response tends to outperform other basic mechanisms like Laplace 
in standard applications; hence, it is not only the simplest approach 
to differentially private algorithms, but often the most effective 
as suggested by the results presented in this work [41]. Another 
cause for SHIELD’s high performance is likely that inherent to 
the Li-Stephens algorithm itself, which is intended to in part to 
account for a nontrivial level of noise in genomic datasets. As an 
inherently noisy problem with robust solutions, imputation is thus 
well-suited for the perturbation introduced by pseudorandom 
mechanisms. Still, however, the fact that SHIELD is able to achieve 
its performance on a relatively small reference panel of less than 
2,500 individuals is quite remarkable given the comparatively 
large number of SNPs involved in the study and the rarity of some 
of the variants involved. With some biobanks now containing 
hundreds of thousands of samples, it is reasonable to presume that 
performance in many contexts may be even higher still [1]. We note 
that the strong performance of SHIELD parallels the effectiveness 
of RAPPOR, a differentially private algorithm for mining strings 
in commercial contexts that is also based on randomized response 
[47]. Unlike SHIELD, however, RAPPOR is not intended for data 
that is inherently binary; rather, arbitrary alphanumeric strings are 
hashed onto Bloom filters [48], that are subsequently perturbed. 
The fact that haplotype data intrinsically consist of bitstrings makes 
randomized response particularly convenient in a genomic context. 
But despite the strong performance exhibited in the experiments 
above, we note three significant limitations to our algorithm. First, 
it should be acknowledged that the privacy guarantees made by 
our program are limited to individual variants. In other words, 
for a given privacy budget ε [35-37], SHIELD can provably ensure 
protection for each sample’s genotype at any one site, but not across 
the entire genome per se. Certain adversarial attacks are therefore 
still feasible with SHIELD even though accurate reconstruction 
of reference haplotypes is not [13-15,17,18]. Whole-genome 

privacy would instead require the division ε across each site (see 
for a discussion on composition in differential privacy), which is 
prohibitively difficult for datasets containing tens of thousands of 
variants [36]. On the other hand, such divisions may be possible 
if a fairly limited segment of the genome is to be imputed. Future 
research into genomic privacy may investigate these scenarios 
or alternative differentially private mechanisms. Further, our 
program is dependent on accurate a priori estimates of population 
parameters which are non-trivial to compute while still enforcing 
local differential privacy [42]. Subsequent work may inquire into 
the feasibility of computing population parameters a posteriori 
by performing some manner of statistical correction [26,29,39]. 
Finally, SHIELD does not natively implement state-space reduction 
techniques featured in programs like Minimac3 to significantly 
reduce compute times [12-15,17,33-37]. Furthermore, it is unclear 
how effective such subroutines would be if included in SHIELD 
given the substantial impact that randomized responses exerts on 
reference panel compression rates. In other words, additive noise 
mechanisms may simply render such forms of lossless clustering 
impractical altogether [19-26,49,50].

CONCLUSION 

In this work, we develop Secure Haplotype Imputation Employing 
Local Differential privacy (SHIELD), a program for performing 
genomic imputation with strong privacy guarantees for reference 
haplotypes via the randomized response mechanism. Analysis 
shows that SHIELD is able to obtain modern accuracy in realistic 
experimental settings at typical privacy budgets, demonstrating 
that differential privacy may be readily incorporated into genomic 
workflows with minimal impact on the utility of downstream results. 
Although the risk of highly accurate breaches of human subject 
privacy in spite of existing confidentiality protocols is growing 
in genomic research, differential privacy offers a mathematically 
cogent and robust solution. The capacity for differentially 
private imputation to straightforwardly return accurate queries 
as demonstrated above is highly promising for the prospect of 
privacy in practical genomic medicine. Given that imputation is 
only one of many stages in a typical biostatistics pipeline, however, 
subsequent work may expand on SHIELD by applying differential 
privacy to other forms of genomic analysis, including GWAS, 
haplotype phasing, and genome annotation. The development of 
a complete suite of algorithms enabling end-to-end private clinical 
studies would constitute a major step towards addressing the 
urgent challenge that is securing sensitive genomic data from de-
anonymization and other adversarial attacks.
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