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Abstract
RNA interference (RNAi), a process through which small interfering RNAs (siRNAs) induce sequence-specific post-transcriptional 

gene silencing, is commonly recognized as a powerful tool not only for functional genomics but also for therapeutic applications. To 
achieve accurate target gene function and successful therapeutic applications, it is necessary to select an efficient and target gene-
specific siRNA with minimal off-target effects. We found that the ability to induce off-target effects on unintended genes is strongly 
correlated to the thermodynamic stability of the duplex formed between the seed region (positions 2-8 from the 5' end of the siRNA guide 
strand) and target mRNA. Consistent with this property, we found that DNA-RNA chimeric siRNA (chiRNA) with deoxyribonucleotides 
in the 5' proximal eight nucleotides of the guide strand and the complementary nucleotides in the passenger strand exerted virtually no 
off-target effect due to low stability of the DNA-RNA duplex in seed-target base-pairing. However, the corresponding RNAi activities for 
primary target genes were also decreased to one-tenth on average by the DNA substitutions. Here, we report that siRNAs with seven 
deoxyribonucleotides exclusively in the seed region (sdRNA) may exhibit efficient target-specificity, but off-target effect-reduced RNAi 
activity.
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Introduction
RNA interference (RNAi) is an evolutionarily conserved pathway 

induced by small interfering RNAs (siRNAs), which are 19 bp in length, 
double-stranded RNAs (dsRNAs) with two-nucleotide 3' overhangs 
[1]. siRNAs incorporated into cells are transferred to an RNAi effector 
complex called an RNA-induced silencing complex (RISC) [2,3]. RISCs 
are assembled on one of the two strands of the siRNA duplex and are 
activated upon removal of the passenger strand [4-6]. Others reported 
that asymmetric features at both siRNA terminals are common to 
functional siRNAs [6-8]. An RNA strand with an unstable 5' terminus 
is easily retained in a RISC. An activated RISC is a ribonucleoprotein 
complex consisting minimally of a core protein, Argonaute (Ago) and 
an siRNA guide strand [9-11]. The siRNA guide strand retained in an 
RISC recognizes mRNAs with perfectly complementary sequences and 
the Ago2 protein cleaves them. 

The RNAi effect of a siRNA has been assumed to be extremely 
specific. However, accumulated evidence has revealed that siRNAs may 
downregulate many unintended genes with partial complementarities 
mainly in the seed region (nucleotides 2-8 from the 5' end of the siRNA 
guide strand) [12-16]. This phenomenon is referred to as an off-target 
effect. The recognition mechanism of an off-target effect is known to 
be similar to that of microRNA-mediated gene silencing [13-15,17-
21]; seed nucleotides are present on the Ago surface in a quasi-helical 
form to serve as the entry or nucleation site for small RNAs in the RISC 
[12,22,23]. To achieve accurate target gene function and successful 
therapeutic applications, it may be critical to select a target gene-
specific siRNAs with minimal off-target effects.

We found that ability to induce an off-target effect is strongly 
correlated to the thermodynamic stability of the duplex formed between 
the seed region of siRNA guide strand and target mRNA (seed-target 
duplex) (Figure 1a) [12]. Furthermore, we have developed a DNA-
RNA chimeric siRNA (chiRNA) with deoxyribonucleotides in the 5' 
proximal eight nucleotides of the guide strand and the complementary 
nucleotides. The chiRNA showed virtually no off-target effects, 
probably because the stability of the seed-target duplex was reduced 
by the DNA substitutions in the siRNA seed region (Figure 1b) [16]. 
For target-specific RNAi with reduced off-target effects, we propose an 
improved chiRNA, referred to as an sdRNA, in which seven nucleotides 
in the seed region is exclusively replaced with DNA without including a 
nucleotide at the 5' terminus (Figure 1c).

Materials and Methods
siRNA

RNAi efficiency in mammalian cells varies considerably depending 
on the siRNA sequence. We have shown that highly functional siRNAs 
for mammalian RNAi have A or U residues at nucleotide position 1 
measured from the 5' end of the guide strand, four to seven A/Us at 
nucleotide positions 1-7 (AU ≥ 57%) and a G/C at position 19 (Figure 
1) [6]. In addition, a GC stretch of no more than nine nucleotides is
contained in siRNA sequences. All of the double-stranded small RNAs
used in this study shown in S1 simultaneously satisfied these conditions.

Cell culture and silencing assay

Human HeLa cells were cultured and subjected to gene silencing 
as described previously [6,12]. Briefly, a 1 ml suspension of human 
HeLa cells (1×105 cells/ml) was inoculated in a 1.5 cm well 24 h prior 
to transfection. The cells were transfected with pGL3 or pGL2 control 
(1 µg; Promega), both of which encode firefly luciferase (luc), and the 
Renilla luc-encoding plasmid psiCHECK-completely matched (CM) or 
seed matched (SM) (0.1 µg; Promega) with siRNA, chiRNA, sdRNA, 
or sd/chiRNA. Lipofectamine 2000 regent (Invitrogen) was used for 
transfection. Each of siRNA, chiRNA, sdRNA, or sd/chiRNA (0.5, 5, 
50, 500, 5,000, and 50,000 pM) was diluted in 50 µl of Opti-MEMI 
without fetal bovine serum (FBS) and mixed with 50 µl Opti-MEMI 
containing 1µl of Lipofectamine 2000 for 30 min in room temperature. 
After the culture medium was changed with FBS-free medium, 100 
µl of siRNA, chiRNA, sdRNA, or sd/chiRNA-Lipofectamine 2000 
complex were added to each well. After 4 h incubation, the medium 
was replaced with fresh medium with FBS. The cells were harvested 
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24 h after transfection and their luc activity was measured using a 
Dual-Luciferase Reporter Assay System (Promega). The siRNAs 
used in this study were chemically synthesized (Sigma) (see S1). 
siGY-441, an siRNA for GFP knockdown, was used as a control. 
IC50 was determined from the results shown in figures 2 and 3 by 
using the following formula:

( ) ( ) ( ) ( )50 10 log / 50 / logIC A B C D C B∧= × − − +  

where in A: of the two points on each Figure which bracket 50% inhibition, 
the higher concentration of siRNA, B: of the two points on each Figure which 
bracket 50% inhibition, the lower concentration of siRNA, C: inhibitory activity 
(%) at the concentration B, D: inhibitory activity (%) at the concentration A.
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Figure 1: Comparison of the RNAi activities and off-target effects of (a) siRNA, (b) chiRNA and (c) sdRNA. The highly functional double-stranded small RNAs 
used in this study contained A or U residues at nucleotide position 1, four to seven A/Us at nucleotide positions 1-7, G/C at position 19, and a GC stretch of no 
more than nine nucleotides is not contained. The small double-stranded RNA unwound into a single-stranded RNA in the RISC. The guide strand retained in the 
RISC recognized on- and off-target mRNAs with complementary sequences to the seed region at positions 2-8 from the 5' end of the guide strand. The on-target 
mRNAs had perfectly complementary sequences. However, off-target effects were observed for mRNAs with seed-complementary sequences. The siRNA showed 
a strong off-target effect and strong RNAi activity. The chiRNA showed a weak off-target effect and weak RNAi activity. The sdRNA was ideal showing a weak off-
target effect and strong RNAi activity.
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matched the siRNA guide strand (Figure 2a), whereas the SM target consisted 
of two parts: the eight 3' terminal nucleotides of the target were complementary 
in sequence to the 5' end (nucleotide position 1) and the seed (positions 2-8) 
of the corresponding siRNA guide strand, while the remaining thirteen 
nucleotides were totally non-homologous to the guide strand (Figure 3a). 

Results and Discussion
Designing sdRNA

We developed an improved method using siRNAs with DNA in 

Plasmid construction
All plasmids constructed were derivatives of psiCHECK-1 (Promega). 

Chemically synthesized oligodeoxynucleotides, including one copy of the 
23-bp CM target sequences (S2) or three copies of the SM target sequences 
(S3) with cohesive XhoI/EcoRI ends, were inserted into the psiCHECK-1 
(Promega) XhoI/EcoRI site, which is situated in the region encoding the 3' 
UTR of Renilla luc mRNA; they are referred to as psiCHECK-CM and SM, 
respectively. The inserted CM or SM targets were expressed as part of the 3' 
UTR of Renilla luc mRNA in the transfected cells. The CM target completely 
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Figure 2: RNAi activity assay using reporter plasmids containing the CM target sequence. (a) Structures of the siRNAs, chiRNAs, sdRNAs, and sd/chiRNAs and 
their base-pairing patterns with completely matched targets; RNAi activities of the siRNAs, chiRNAs, sdRNAs, and sd/chiRNAs of (b) CLTC2416; (c) FL2-153; (d) 
FL3-36 and (e) VIM270.
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the seed region (sdRNA), in which ribonucleotides were replaced with 
DNA at positions 2-8 from the 5' end of the siRNA guide strand but a 
ribonucleotide at the 5' terminal end was not replaced with DNA. The 
complementary ribonucleotides of the guide strand seed region in the 
passenger strand were also replaced with DNA (Figure 1c). The sdRNA 
was expected to have strong target-specific RNAi activity and weak off-
target effect activity, because it had a DNA seed sequence that could 
form a DNA-RNA seed-target duplex with low stability compared to 
that formed by an RNA-RNA duplex; the other positions (at 1 and 9-21) 
were ribonucleotides. In particular, A or U ribonucleotide residues at 

the 5' end of the guide strand might be important because the A/U 
nucleotide itself at the 5' terminal was shown to contribute strongly to 
RNAi activity. This observation might be explained by the fact that the 
nucleotide monophosphates AMP and UMP bind to Ago2 with up to 
30-fold higher affinity than that observed with either CMP or GMP [24].

Comparison of the on-target RNAi activities of siRNAs, 
chiRNAs, sdRNAs, and sd/chiRNAs

To compare the RNAi activities of siRNAs, chiRNAs, and sdRNAs 
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Figure 3: Off-target effect activity assay using a reporter plasmid containing SM target sequence. (a) Structures of the siRNAs, chiRNAs, sdRNAs, and sd/chiRNAs 
and their base-pairing patterns with seed-matched targets; Off-target effect activities of the siRNAs, chiRNAs, sdRNAs, and sd/chiRNAs of (b) CLTC2416; (c) FL2-
153; (d) FL3-36 and (e) VIM270.
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based on the same sequences (Figure 2a), four different sequences 
complementary to human clathrin heavy chain (CLTC2416), luc 
(FL2-153 and FL3-36), and human vimentin (VIM270) were used. As 
detailed in the Experimental Section, we constructed psiCHECK-CM 
reporters that contained Renilla luc with the complementary sequence 
of each siRNA introduced into its 3' UTR. The psiCHECK-CM plasmids 
were transfected into human HeLa cells together with pGL3-Control 
(encoding firefly luc) along with small double-stranded RNA. One 
day after transfection, Renilla luc activity was measured with reference 
to the firefly luc activity level in the transfected cells, and the relative 
luc activities were calculated. Each of the highly functional siRNAs 
reduced the relative luc activity (RNAi activity) in a dose-dependent 
manner at siRNA concentrations of 0.5 pM to 50 nM (Figure 2b-e). The 
calculated IC50 values of the nonmodified siRNAs varied from 9.4-105.6 
pM depending on the sequence, indicating that siRNAs used in this 
study are very active as reported by others [25,26]. The IC50 values of 
the chiRNAs were from 19.0-336.1 pM, a decrease of 14-49% compared 
to the IC50 values of the siRNAs. The IC50 values of the sdRNAs were 
from 11.2-129.8 pM, about 58-83% of those of the siRNAs. As shown 
in figure 4a, siRNAs showed the strongest RNAi activities in all of four 
siRNAs used in this study, while chiRNAs showed the lowest activities. 
Because sdRNAs with a deoxyribonucleotide in the seed region showed 
equivalent RNAi activity with the siRNAs, the low RNAi activity of the 

chiRNAs might not be due to the deoxyribonucleotide substitutions in 
the seed region. To investigate whether a deoxyribonucleotide at the 5' 
terminal end of the guide strand and three deoxyribonucleotides at the 
3' end of the passenger strand were involved in the reduction in RNAi 
activity, we examined the effect of an sd/chiRNA containing an sdRNA 
guide strand and chiRNA passenger strand. These sd/chiRNAs also 
showed equivalent RNAi activities with the siRNAs; their IC50 values 
were 37-73% of the siRNA values (Figure 2b-e), suggesting that the 5' 
end ribonucleotide in the guide strand played an important role in the 
RNAi activity. These results show good agreement with the previously 
reported result that AMP and UMP bind to Ago2 with up to 30-fold 
higher affinity than either CMP or GMP [24].

Comparison of the off-target effect activities of the siRNAs, 
chiRNAs, sdRNAs, and sd/chiRNAs

To compare the off-target effect activities of siRNAs, chiRNAs, 
and sdRNAs (Figure 3a), four different sequences, CLTC2416, FL2-
153, FL3-36, and VIM270, were used. Off-target effect activities were 
measured using the psiCHECK-SM reporter system. These highly 
functional siRNAs, siCLTC2416, siFL2-153, siFL-36, and siVIM270, 
showed off-target effects in a dose-dependent manner until the siRNA 
concentration reached 50 nM (Figure 3b-e). The calculated IC50 values 
of the off-target effects in the nonmodified siRNAs, siCLTC2416, siFL2-
153, and siVIM270, varied from 46.0-1261.5 pM, and that of siFL3-
36 was not determined. However, the off-target effects of the chiRNAs 
were considerably reduced as shown in our previous report [16]; their 
off-target effects were reduced to undetectable levels, and the IC50 value 
of chiVIM270 was decreased to 0.6% (7968.7 pM) of the IC50 value of 
siVIM270. Previously, we showed that ability to induce an off-target 
effect is correlated to the thermodynamic stability of seed-target duplex 
of siRNA [12]. The melting temperature value of RNA-RNA duplex at 
seed positions 2-8 (Tm2-8) of siCLTC2416 is 33.2ºC, which decreases 
to 12.7ºC when DNA-RNA duplex is formed by chiCLTC2416, 
indicating the stability of seed-target duplex is strong for siCLTC2416 
but weak for chiCLTC2416 consistent with the results shown in figure 
3b. Similarly, Tm2-8 values of RNA-RNA duplexes formed between 
siFL2-153, siFL3-36, and siVIM270 and each target mRNAs were 
21.0-26.2ºC, and the values of DNA-RNA duplexes formed between 
chiFL2-153, chiFL3-36, and chiVIM270 and each target mRNAs 
decreased to 3.1-18.9ºC (Figure 3c-e) [12]. Since the Tm2-8 values in 
the duplexes formed between sdRNAs and target mRNAs are same 
as those of DNA-RNA duplexes formed between chiRNAs and target 
mRNAs, it was unexpectedly that the sdRNAs showed strong off-target 
effects compared to those of chiRNAs. The IC50 values of sdFL2-153 
and sdVIM270 were decreased to 41% (3045.0 pM) and 1.7% of the 
IC50 value of each siRNA, respectively. As shown in figure 4b, the three 
siRNAs showed the strongest off-target effect activities, while the 
chiRNAs showed the weakest off-target effect activities; the sdRNAs 
showed intermediate levels of off-target effect activity. The decreases 
in off-target effect activities of the sdRNAs compared to those of the 
siRNAs might be caused by the DNA substitutions in the seed region, 
suggesting that decreased stabilities in the seed-target duplexes reduced 
the off-target effects. However, the off-target effects of the sdRNAs 
increased compared to those of the chiRNAs, suggesting that the 5' end 
ribonucleotide of the guide strand and three ribonucleotides at the 3' 
end of the passenger strand contributed to the increase in off-target 
effects. Furthermore, the sd/chiRNAs showed weak or similar levels of 
off-target activities compared to those found with sdRNAs (Figure 4b). 
This result suggests that the 5' end RNA of the guide strand contributed 
strongly to the off-target effect, while the three ribonucleotides at the 3' 
end of the passenger strand contributed weakly to this effect. 
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Figure 4: RNAi activities and off-target effect activities of the siRNAs, chiRNAs, 
sdRNAs, and sd/chiRNAs. Comparison of the (a) RNAi activities and (b) off-
target effect activities of the siRNAs, chiRNAs, sdRNAs, and sd/chiRNAs. 
Upper panels: The horizontal axis indicates the IC50 of each siRNA. Vertical 
axis indicates (a) IC50 of the RNAi activities and (b) off-target effect activities of 
siRNAs, chiRNAs, sdRNAs, or sd/chiRNAs with the same sequences as the 
siRNAs shown on the horizontal axis. Lower panel: schematic representation 
of the (a) RNAi activities and (b) off-target effect activities of the siRNAs, 
chiRNAs, sdRNAs, and sd/chiRNAs.
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Conclusions 
Based on our previous reports, we expected that an sdRNA that 

included a DNA seed would be an appropriate tool for inducing target-
specific RNAi with reduced off-target effects. Our results confirm that 
the sdRNA showed weak off-target effect activity compared to siRNAs 
and strong RNAi activity compared to chiRNAs. A 5' end ribonucleotide 
in the siRNA guide strand contributed strongly to the off-target effects, 
whereas the three ribonucleotides at the 3 end of the siRNA passenger 
strand contributed weakly to the off-target effects. Our results indicate 
that sdRNAs might be a powerful tool for developing ideal RNAi 
experiments and therapeutic applications.

Supplementary Information Files
S1. Supplementary Information 1. RNA sequences.

S2. Supplementary Information 2. Target sequences in psiCHECK-
CM.

S3. Supplementary Information 3. Target sequences in psiCHECK-
SM.
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