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Introduction
Population based optimization algorithms are algorithms in which 

a set of input values (or candidate solutions, or positions within the 
problem search space) is maintained through the course of the algorithm, 
as opposed to non-population-based methods which generally examine 
only one input value at each iteration of the algorithm. We shall refer 
to these input values as “individuals”, although common terminology 
varies based on the context of and (often biological) inspiration 
for specific algorithms. In general terms, a typical procedure for a 
population-based single-objective optimization algorithm is as follows: 

Initialize all individuals within the search space

while Termination condition not met do

     Choose next individual to examine based on

     Scheduling function

     Apply algorithm-specific operations

     Update the individual’s position within the search space

end

Choose the best individual for the final optimized value

Note that in the for loop above, each individual is processed in order 
at every iteration. This is the dominant method of updating individuals’ 
positions for most population-based optimization algorithms. 
However, when the individuals are processed separately within the 
algorithm, it is not necessary to follow this update ordering throughout 
the optimization. In this paper, we introduce a generalization of this 
concept in which a scheduling function is defined in order to choose the 
next individual to examine at each iteration. Thus, the outline above 
becomes instead: 

Initialize all individuals within the search space

while Termination condition not met do 

     for Each Individual in Population do

         Apply algorithm-specific operations

         Update the individual’s position within the search space

     end

end

Choose the best individual for the final optimized value

With this generalization defined, the typical procedure outlined first 
becomes a special case of a “round-robin” schedule function, in which 
each individual is examined in a clockwork manner. We will also show 
in this paper that even other simple schedule functions significantly 
outperform the typical round-robin schedule.

In order to show this, we will employ one of the most widely used 
simple population-based optimization algorithms, Particle Swarm 
Optimization (PSO). For the sake of consistency and reproducibility, 
we will use the Standard Particle Swarm Optimization implementation 
standardized in 2011, known as SPSO-2011 [1-3]. Using a generalization 
of this algorithm to include schedule functions, we will compare 
several such schedule functions on a series of common optimization 
benchmark problems, and show that some of these functions 
consistently outperform the standard round-robin schedule used in 
many population-based algorithms.

Particle swarm optimization
 Particle Swarm Optimization (PSO) [4] is a population-based 

optimization method involving a collection of “particles” iteratively 
moving within a problem search space according to position updating 
formulas. These formulas include movement toward the current 
best-known position by the individual particle, movement toward 
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In many population-based optimization algorithms (Evolutionary Algorithms, Particle Swarm Optimization, etc.), 

each iteration of the algorithm involves a procedure-specific set of operations for each population member, followed 
by a resulting update of the position of that member within the problem search space. However, for algorithms in 
which these operations involve only a single population member and not the population as a whole, there is no 
inherent need to update every member at every iteration. In this paper, we propose a generalization of this updating 
procedure wherein a “scheduling” function is defined to dictate the ordering of updates through the application 
of algorithm, thus considering the typical procedure of updating every population member at every iteration as a 
particular “round-robin" schedule. Using the standard Particle Swarm Optimization algorithm (SPSO-2011) as a 
basis for demonstrating the concept, we compare a number of different scheduling functions and show that several 
of these functions outperform the typical round-robin schedule for a set of benchmark optimization problems. 
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the current best-known position by the swarm as a whole, and some 
random movement. These position update formulas form the heart of 
the PSO algorithm [5,6]. In basic form for a single particle, they are:

= ( ) ( ) : = 1...d d p p d d g g d dv v r p x r g x d Dω φ φ+ − + −

=x x v+
where:

D is the number of dimensions in the search space

x2 is dimension d of the particle’s position

vd is dimension d of the particle’s velocity 

rp and rs are random numbers in [0, 1]

pd is dimension d of the particle’s best-known location

gd is dimension d if the swarm’s best-known location ω, ϕp and ϕg 
are parameters to control behavior of the algorithm

Much research has been done on the selection of PSO parameters 
(e.g., [7-9]), and many improvements to the algorithm have been 
proposed since its introduction. Many of these improvements have been 
incorporated into the successive standard PSO implementations, with 
the latest being SPSO-2011, the version utilized in this paper. A complete 
discussion of these improvements and alterations is outside the scope of 
this paper, but both descriptions of the SPSO-2011 implementation and 
source code in various languages are available at [3,10,11].

Scheduling functions
 Our aim in this paper is not to find the “best” scheduling function 

for population-based algorithms of the type under consideration, but 
rather to demonstrate that some other relatively simple scheduling 
functions outperform the standard round-robin schedule. Since 
one of the most basic considerations in any optimization task is the 
tradeoff between exploration and exploitation, a natural choice for 
potential scheduling algorithms is those based on the widely studied 
Multi-Armed Bandit problem [12-14], which is a classic exploration/
exploitation problem in which a player at a series of slot machines 
seeks to maximize overall reward. In particular, we will examine 
some of the best-performing schedule functions from the comparison 
work of Kuleshov and Precup [15] and others [16,17] – the ε -greedy 
algorithm, Boltzmann Exploration (Softmax), and Upper Confidence 
Bounds, in addition to the standard round-robin schedule and a 
random scheduling function.

All together, we will test the following eight scheduling functions, 
about which details are given in the following sections:  Round-robin 
Schedule 

•	 Random Schedule 

•	 Fixed τ greedy Schedule 

•	 Adaptive ε greedy Schedule 

•	 Fixed τ Softmax Schedule 

•	 Adaptive τ Softmax Schedule 

•	 UCB1 Schedule (Upper Confidence Bounds) 

•	 UCB1-Tuned Schedule 

ε-Greedy schedule

The ε -greedy algorithm is a simple and popular decision algorithm. 

At each decision point, the algorithm selects the option with the 
highest current reward with probability 1-ε,  and a random option 
with probability ε. That is, given rewards at time t of 1( ),..., ( )kr t r t , the 
probability at time t+1 of selecting option i is given by:

=1...1 / if =arg max ( )
( 1) =

/ otherwise
j K j
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Clearly, the choice of ε  significantly affects this algorithm. A full 
exploration of ideal values for ε  in this context is outside the scope 
of this paper, but based on results in the literature and from our own 
testing, we will use a fixed value of ε = 0 and a simple linear decay from ε 
= 1 to ε = 0 for our fixed and adaptive ε -greedy strategies, respectively.

Boltzmann exploration (Softmax)

 In general, Softmax algorithms arise from Luce’s choice axiom [18], 
which states that the probability of choosing an item i from a pool of j 
items is given by:

( ) = i

j
j

wp i
w∑

where w  is some context-appropriate weighting. Boltzmann 
Exploration is one such Softmax method that uses a Boltzmann 
distribution for selection. That is, given rewards at time t of 

1( ),..., ( )kr t r t , the probability at time t+1 of selecting option i is 
given by:
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Where Γ is a “temperature” parameter controlling the exploration/

exploitation tradeoff. Again, a full discussion of ideal values for Γ  in this 
context is outside the scope of this paper, but based on available literature 
we will use a fixed value of Γ = 0.05 and a simple linear decay from Γ = 1 to 
Γ = 0.05 for our fixed and adaptive Softmax strategies, respectively.

Upper confidence bounds

 Upper Confidence Bounds (UCB) algorithms arose from the 
Multi-Armed Bandit problem to produce a limit on regret for decision 
problems of that type [19,20]. These algorithms have proved successful 
in a number of applications, including, notably, Artificial Intelligence 
programs for the game of Go.

For these algorithms, one additional variable is needed – the 
number of times option i  has been selected, denoted by ni. Unlike the 
previous two schedule functions, the basic UCB algorithm, UCB1, does 
not assign a probability to each option, but rather first chooses each option 
once, and from then on, given rewards at tim t of 1( ),..., ( )kr t r t , always 
chooses option i that maximizes:

2 ln( )i
i

tr t
n

+

The creators of this algorithm also propose an alternative “tuned” 
version, UCB1-Tuned [19], which has been found to perform better in 
practice. This version incorporates the variance of each option ( 2ˆ iσ ) 
into the calculation of the next choice. UCB1-Tuned, given rewards at 
time t of 1( ),..., ( )kr t r t , always chooses option i that maximizes:

ln 1( ) min , ( )
4i i i

i

tr t V n
n

 +  
 

where
2 2 lnˆ( ) = ( ) .

( )i i
i

tV t t
n t

σ +

We will use both UCB1 and UCB1-Tuned as separate scheduling 
functions in our experiments.
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Round-robin and random schedules

 The round-robin and random schedules are straightforward. The 
round-robin schedule always chooses the next option in a clockwork 
manner throughout the algorithm. The random schedule chooses an 
option (pseudo-) randomly from a discrete uniform distribution.

Benchmark functions
 In order to compare the effects of these different scheduling 

functions, we will use as the optimization problem a set of common 
optimization benchmark functions. These minimization functions are 
some of the most common to appear in optimization literature (e.g., [21-
23]), and were chosen to display a variety of function characteristics. 
Those functions are shown in Table 1, where D  is the number of search 
space dimensions (Table 2).

For all of these functions, the global minimum is (0)f


. Each of 
these functions is defined for an arbitrary number of dimensions, as 
discussed in the following section.

Experimental design
In this section, we detail the design of our experiments to compare 

the scheduling functions on the benchmark problems defined above. Of 
particular consideration are the parameters to be used for the Particle 
Swarm Optimization algorithm, the number of dimensions used for the 
benchmark functions, and the methods of comparing the schedule effects.

PSO parameters

In order to isolate the effect of the scheduling functions, as little 

as possible was changed from the SPSO-2011 implementation. Thus 
the PSO parameters were left at their default values, which included a 
swarm size of 40, and parameter values of: 

1=
2 log(2)

ω

1 2
1= = log(2)
2

c c +

See [1] and [2] for discussion and definition of parameters in this 
context.

All other details of the SPSO-2011 implementation will be left 
unchanged aside from the introduction of the schedule functions 
defined above, and one other small detail – the initial particle positions 
will be randomly calculated once, then those same starting positions 
will be used for each schedule and each independent run. This again 
is to isolate the effect of the schedules by eliminating random starting 
biases.

Benchmark function dimensions

Each of the benchmark functions we will use is defined for an 
arbitrary number of dimensions, and it is common in benchmarking 
optimization algorithms to run an algorithm over a variety of numbers 
of dimensions in order to see performance characteristics at different 
levels. We will also adopt this approach and show results for each 
function at 2, 10, and 50 dimensions.

Other considerations

In the Results section, we will use two different methods of 
comparing the different scheduling functions. First, we will compare 
the best-known function values after a specified number of objective 
function evaluations, as a way of showing a snapshot of the performance 
of each schedule. Specifically, we will compare the results after 50d N+  
function evaluations, where d is the number of dimensions of the 
problem and N is the number of PSO particles, in this case 40 (to 
account for the evaluations of the initial placements of the particles). In 
addition, we will show a trace of the best-known function values after 
each objective function evaluation, as a way of showing the performance 
of each schedule over time.

Since SPSO-2011 is a stochastic algorithm, for both of these 
methods we will show the best-known function values averaged over 
500 independent runs.

Finally, since several of the scheduling functions defined above 
require an estimate of current reward, we will use each particle’s 
current best-known objective function value as that estimate within the 
schedule. We also conducted experiments using the particle’s current 
function value as the reward estimate, but the results did not differ 
significantly.

Results
 In presenting our results, we begin with a summary of the overall 

performance of the different scheduling algorithms, and then break 
down these results to show more specific details of the schedules, the 
benchmark functions, and the number of dimensions involved in the 
experiments.

These results demonstrate the main thesis of the paper – that 
significant performance gains can be achieved in population-based 
optimization algorithms through the use of alternative scheduling 
functions for updating. In particular, the results indicate that massive 
performance gains are possible at low dimensions, and more modest 

Name Function Range

Sphere 2
=1

( ) = D
ii

f x x∑ 100 100ix− ≤ ≤

Rastrigin 
(generalized) ( )2

=1
( ) = 10cos(2 ) 10D

i ii
f x x xπ− +∑ 2 2ixπ π− ≤ ≤

Rosenbrock ( )1 2 2 2
1=1

( ) = 100( ) ( 1)D
i i ii

f x x x x−

+ − + −∑ 2 2ix− ≤ ≤

Griewank 
(generalized)

2
=1 =1

1( ) = 1
4000

DD i
ii i

xf x x cos
i

 − + 
 

∑ ∏ 600 600ix− ≤ ≤

Schwefel 
(normalized)

( )=1
sin abs( )

( ) =
D

i ii
x x

f x
D

−∑ 512 512ix− ≤ ≤

Salomon 2 2
=1 =1

( ) = 1 cos 2 0.1D D
i ii i

f x x xπ − + 
 ∑ ∑ 100 100ix− ≤ ≤

Table 1: Benchmark functions.

Schedule Average Function Performance relative
Value to Round-Robin

Round-robin 1.000 100 %
Random 0.846 118 %

Fixed ε -greedy 0.272 368 %

Adaptive ε -greedy 0.199 502 %

Fixed τ  Softmax 1.085 92 %

Adaptive τ  Softmax 0.883 113 %
UCB1 0.840 119 %

UCB1-Tuned 0.833 120 %

Table 2: Averaged results - 2 dimensions.
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gains at higher dimensions with the relatively simple scheduling 
functions tested. With more advanced functions or hybrid approaches, 
it is very likely that scheduling functions can be defined that provide 
consistent advantages across a broad spectrum of problems and 
numbers of dimensions.

Overall summary

Overall, the adaptive -greedy schedule performed the best by far at 
low dimensions, outperforming the standard round-robin schedule by 
over five-fold on average on 2-dimensional benchmark problems. On 
the 10-dimensional benchmark problems, again the adaptive ε-greedy 
schedule performed the best, narrowly outperforming the round-robin 
schedule, which itself outperformed all others. On the 50-dimensional 
benchmark problems, most of the scheduling functions performed 
similarly, with the adaptive Softmax schedule performing the best, and 
the fixed ε -greedy schedule as a low-performing outlier.

Average comparisons for 2 dimensions, 10 dimensions, and 
50 dimensions are shown in three Tables 3 and 4, with the columns 
normalized by the round-robin schedule results (Table 3). 

Results in 2 dimensions

Both of the ε-greedy scheduling functions were by far the best 
performers for the 2-dimensional benchmark functions. A bar graph 
of the average function values for each schedule after 100 evaluations 
is shown in Figure 1. Each function value is normalized by the round-
robin schedule average value, in order to show the relative performance 
of each alternative scheduling function.  

As a more complete view of the best-known function value over time 
for each schedule, Figure 2 shows a trace of these values for each number 
of function evaluations on each benchmark function. Note that the PSO 
swarm for each scheduling function was set to the same randomized 
starting location, so the initial best-known values for each are identical.

This figure in particular illustrates how well the ε-greedy schedules 
performed. The figure also illustrates how closely aligned the behavior 
of the UCB1 and UCB1-Tuned algorithms are over these benchmark 
functions.  

Results in 10 dimensions

For the 10-dimensional benchmark functions, again the adaptive 
ε-greedy schedule was the best performer, although in this case the 
standard round-robin schedule was also one of the best. A bar graph 
of the average function values for each schedule after 500 evaluations 
is shown in Figure 3. For the sake of clarity in this figure, high values 
are clipped for the fixed ε -greedy schedule on the Sphere, Rosenbrock’s 
function, and Griewank’s function. The averaged values for this 
schedule are listed in Table 4.  

Figure 4 shows a trace of the best-known function values for each 
number of function evaluations on each benchmark function. This 
figure illustrates that the fixed ε-greedy schedule’s performance begins 
to fall off as the number of dimensions in the optimization function 
increases. This trend continues to the 50-dimensional case, where the 
fixed ε -greedy scheduling function shows by far the worst performance.  

Results in 50 dimensions

For the 50-dimensional benchmark functions, the adaptive-τ  
Softmax schedule performed the best, although the performance of 

Schedule Average Function Performance relative

Value to Round-Robin

Round-robin 1.000 100 %
Random 0.856 117 %

Fixed ε -greedy 17.270 6 %

Adaptive -greedy 1.916 52 %

Fixed τ  Softmax 0.969 103 %

Adaptive τ  Softmax 0.857 117 %

UCB1 0.958 104 %
UCB1-Tuned 0.961 104 %

Table 4: Averaged results - 50 dimensions.

Schedule Average Function Performance relative
Value to Round-Robin

Round-robin 1.000 100 %
Random 1.539 65 %

Fixed ε -greedy 4.727 21 %

Adaptive ε -greedy 0.958 104 %

Fixed τ  Softmax 1.698 59 %

Adaptive τ  Softmax 1.775 56 %

UCB1 1.690 59 %
UCB1-Tuned 1.706 59 %

Table 3: Averaged results - 10 dimensions.

NO

YES

Initialize all 
individuals 

Is termination 
condition met 

Choose next individual 
by scheduling function 

Apply algorithm-
specific operations 

Update individuals 
position 

Return best objective 
function value 

Figure 1: Modified general optimization algorithm. 

Figure 2: Final function value comparison for 2 dimensions.
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many of the scheduling functions was similar. Although the adaptive 
ε-greedy algorithm was the top performer in the 2-dimensional and 
10-dimensional cases, and still outperformed all other schedules on two 
of the 50-dimensional benchmark functions (Rastrigin’s function and 
Schwefel’s function), overall it did not perform as well as the Softmax or 
UCB schedules for the 50-dimensional case.

A bar graph of the average function values for each schedule after 

2500 evaluations is shown in Figure 5. Again, for the sake of clarity 
in this figure, high values are clipped for the fixed ε -greedy schedule 
on the Sphere, Rosenbrock’s function, and Griewank’s function. The 
averaged values for this schedule are listed in Table 1.

Figures 6 and 7 shows a trace of the best-known function values 
for each number of function evaluations on each benchmark function.

This figure illustrates how poorly the fixed ε-greedy scheduling 

Figure 3: Best-known function values trace for 2 dimensions.

Figure 4: Final function value comparison for 10 dimensions.
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function performs in high dimensions. This is understandable, since this 
schedule tends to be highly exploitative, whereas for high-dimensional 
optimization problems, a good deal of exploration is needed before 
exploitation yields fruitful results (Table 4).

Conclusions
Within population-based optimization algorithms, the updating 

of the search-space position of each individual at each iteration of the 
algorithm is generally assumed. However, this is often not inherently 

necessary. We have proposed a generalized approach in which 
scheduling functions are used to define the order of these position 
updates.

The main conclusion of this work is that there is great potential 
for improvement of the performance of population-based optimization 
algorithms through defining these scheduling functions. Even with 
the relatively simple scheduling functions examined in this paper, 
significant performance increases were shown in several contexts. 
Perhaps the most striking example of this was a performance increase 

Figure 5: Best known function values trace for 10 dimensions.

Figure 6: Final function value comparison for 50 dimensions.
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of over 500% for the 2-dimensional set of benchmark problems, merely 
by using a simple adaptive ε-greedy schedule instead of the standard 
round-robin schedule within the Standard Particle Swarm Optimization 
(SPSO-2011) algorithm [24-31].

We highlight the relative simplicity of these scheduling functions 
to emphasize the need for further research in this area, particularly 
to define schedules that provide the most advantage for the types of 
problems relevant to the contexts of various practitioners. There is much 
potential for improvement, both for general-purpose population-based 
algorithms through the use of more advanced scheduling function or 
hybrid approaches, and for more specific applications through the same 
type of comparison and analysis shown in this paper, but focused on the 
particular attributes of the problems and data sets under consideration 
within those more specific contexts.
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