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Introduction
  The orexin (hypocretin) is an important neurotransmitter in the 

regulation of sleep-wakefulness and appetite. There are two types of 
orexin peptides: the orexin-A (OXA or hypocretin 1) and orexin-B 
(OXB or hypocretin 2). The majority of the orexin peptides are 
synthesized in neurons located in the lateral and back hypothalamus 
and they send projections throughout the brain regions [1,2]. These 
peptides derive from the prepro-orexin (prepro hypocretin) gene, 
which encodes a precursor (130 amino acids in rodents, 131 residues in 
humans) that is cleaved into orexin-A (synonymous with hypocretin-1; 
33 amino acids) and orexin-B (hypocretin-2; 28 residues (Figure 1).

The orexin binds to two types of receptors, belonging to the class of 
G protein-coupled receptors: orexin receptor type-1 (OX1R or hypo-
cretin receptor 1) and orexin receptor type-2 (OX2R or hypocretin 
receptor 2) Both orexin receptors subtypes can bind to OXA and OXB, 
but with differential affinity; in particular orexin receptor type-1 has a 
higher affinity for OXA, while orexin receptor type- 2 has equal affinity 
for either orexin peptide [3,4] (Figure 1).

Orexin neurons have a lot of projections related to many and differ-
ent brain regions, as well as for the orexin receptors that are expressed 
in several areas of the brain [1,2]. A similar distribution of orexin neu-
rons and their receptors explains how these neurotransmitters are 
involved in numerous physiological processes, including the modula-
tion of the sleep, the arousal and of the energy expenditure,    suggesting    
an    important    role    in    development    of    obesity    [5–8]    (Figure  
2). In this review we want to highlight that the orexin system can lead 
to an increase in energy expenditure and so give a contribute to the 
obesity resistance.  We want to provide a synthesis of the current state of 
knowledge in the regulation of hypothalamic orexin during obesity and 
provide a platform on which to develop an improved clinical outcomes 
during obesity in relation to the autonomic nervous system, brown adi-
pose tissue, sleep-wake rhythm, expenditure energy.

The way of the action of the orexin system depends on a series of 
signals to multiple brain regions, and it is extremely important to un-
derstand the anatomy and function of the neuronal network of orexin 
system. The proof of the fact the orexins peptides are involved into 

energy metabolism is exemplified in a mouse model that exhibits post-
natal loss of orexin neurons [5]. In these mice, the orexin pro-
moter drives expression of the neurodegenerative gene ataxin-3 and 
leading to progressive loss of the orexin neurons during development. 
These mice show hypophagia, lower levels of spontaneous physical 
activity (SPA) and express the appearance of a obesity state when 
fed a regular diet [5,8,9]. This indicates that an important function 
of the orexins peptides is to rule energy expenditure and so modulate 
food intake. A further support for this idea comes from other mouse 
models in which the results prove that these mice show resistance to 
high-fat diet–induced obesity, corroborating with the role of orexin 
in promoting energy expenditure [10,11].
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Abstract
Obesity is a public health disease and its incidence is steadily increasing both in adults and in children especially 

in the Western World. It is important to understand the underlying mechanisms of obesity and possible treatments as 
the orexin system with its receptors, which are involved in different physiological processes. In fact, the aim of this 
mini-review is to consider the importance of the orexin system and the role that orexin plays in the regulation of obesity 
and physical activity. Furthermore to demonstrate how the orexin and its receptors fit within a network distributed 
in multiple brain areas, each with specific actions, whose activation and interconnection has been seen to lead 
to a lower propensity for increase of fat mass, it could thus constitute an important future target for prevention and 
treatment of obesity.

Figure 1: Composition of Orexin-A and Orexin-B. OX1R: orexin receptor type-
1. OX2R: orexin receptor type-2.
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Over the location in the lateral hypothalamus, which were initial-
ly described, the orexin and its receptors have been highlighted in 
neuronal bodies and positive fibers present in different regions of 
the central nervous system (CNS) and their position is in connection 
with the functions performed. Therefore a lot of brain sites join in this 
regulatory network through a significant number of neurotransmitters 
(Figure 3). The functions of the orexin system are expressed in differ-
ent  brain regions,  they control  the same behaviors;  in  fact  many of 
the brain  sites  that participate in  the SPA network also participate 
in regulatory networks for food intake and other aspects of energy 
balance. Several brain regions receive orexinergic input and express the 
OXR and this instance suggests that the behavioral outcomes of the 
orexin system are due to simultaneous activation of the OXR in dif-
ferent brain regions connected through projections.

Orexins are produced in a particular area of the hypothalamus, 
including the caudal lateral hypothalamus and adjacent perifornical 
area [12] and, from these sites, orexin projects throughout the other 
areas of the brain. On the basis of anatomical predisposition appears 
to be valid the hypothesis that the effects of the action of the orexin 
system derive from a series of parallel signals that come from different 
brain regions [13]. It is important to know that orexin neurons are in a 
baseline intrinsic state of depolarized activity [14] and are highly influ-
enced by local conditions in an intralateral hypothalamic local network 
[15]. The Activation of the OXR causes depolarization and active 
neuronal firing by four possible mechanisms:

•	 activation of non-specific cationic currents

•	 activation of the Na+/Ca2+ exchanger

•	 phosphorylation-dependent inhibition of inwardly rectifying 
K+ channels

•	 increase in Ca2+ through activation of L- and N-type Ca2+channels 
[16–20].

The type of mechanism appears to be cell-dependent and both 
orexin subtypes can couple to many G- proteins that cause neuronal 
depolarization through many mechanisms cell-specific (Figure 4).

The Role Of Orexin In Brown Adipose Tissue 
Thermogenesis And Activation Of Sympathetic Nervous 
System

Orexin system also influences body temperature. In fact, an 
Intracerebroventricular (icv) administration of orexin system induces 
an increase in the firing rate of the sympathetic nerves to interscapular 
brown adipose tissue (IBAT), accompanied with a rise in IBAT and 
colonic temperatures [21]. In addition, the presence of orexin receptors 
in many cerebral areas suggests that additional functions are played 
by orexin system [22]. In general, those experiments demonstrate that 
an icv injection of orexin system increases the temperature of IBAT, 
which is the most important effect or of non shivering thermogenesis 
in the rat [23], illustrating that the rise in heat production is also 
due to the activation of thermogenesis unrelated to muscle activity. 
IBAT activity is controlled by the sympathetic nervous system, and 
factors, which influence thermogenesis, appear to act centrally to 
modify the sympathetic outflow to IBAT [24]. The increase in colonic 
temperature emphasizes the effect of orexin system on the “core” 
temperature confirming the inclusion of orexin system among the 
peptides controlling body temperature. The rise of the sympathetic 
discharge induced by orexin system is corroborated by the increase in 
heart rate, although a possible reduction on the vagal tone cannot be 
excluded. Since Van Den Pol [25] demonstrated a direct innervation 
of the intermedio lateral column of spinal cord by orexin-fibers, there 
might be another direct pathway of the orexin induced activation of the 
sympathetic nervous system.

Materials and Methods
Animals

Most of the animal studies were conducted on Sprague-Dawley rats, 
3 months old and weighing 250–300 g were used in the experiments. 
The rats were housed in pairs at controlled temperature (22 ± 1°C) and 
humidity (70%) with a 12:12 h light–dark cycle with light from 07:00 
to 19:00 h. The experiments were in accordance with the European 
Communities Council Directive of 24 November 1986 (86/609/EEC).

Figure 2: Effects of orexins in peripheral tissue and central nervous system.
and development of obesity. Adapted from Messina et al., [8].

 

Figure 3: Brain neurotransmitters. OX1R: orexin receptor type-1. OX2R: orexin 
receptor type-2.

 

Figure 4: Neuronal depolarization. OX1R: orexin receptor type-1. OX2R: 
orexin receptor type-2.
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tor in determining this variability is physical activity, and specifically a 
component of total energy expenditure known as nonexercise induced 
thermogenesis (NEAT) (Figure 4) [31–33]. NEAT includes all forms 
of energy expenditure not associated with formal exercise and it is 
related with the concept of spontaneous physical activity (SPA) that 
is utilized to describe “any type of physical activity that does not qualify 
as voluntary exercise” [34–42].

Orexin role in sleep regulation and obesity 

Many animal studies also support the idea that disordered sleep 
may contribute to obesity. For example, following weight gain on a 
high fat diet, obese mice showed increased time spent in slow wave 
sleep (SWS) [43], while time spent in wakefulness was decreased and 
the time spent in SWS was increased especially in the dark (active) 
period.  In this model, greater body weight was positively correlated 
with more time spent in SWS, and negatively correlated with time spent 
in wakefulness in the dark period.  Obesity is associated with decreased 
levels of orexin [44].  Orexin system regulates and consolidates sleep/
wake patterns.  Narcoleptic patients, who lack orexin, have altered 
sleep patterns, highly fragmented sleep and elevated body mass index 
[45], which highlights the importance of orexin in maintaining normal 
sleep/wake patterns and energy homeostasis.  Thus alterations in orexin 
levels might be related to disordered sleep regulation observed in obese 
humans and animal models.

A decade ago Levin and colleagues showed that, when exposed 
to high fat diet, more than half of out-bred Sprague-Dawley (SD) 
rats developed diet-induced obesity, while the rest of the rats showed 
resistance to diet-induced obesity [46].  Previously we showed greater 
spontaneous physical activity (SPA), orexin sensitivity and orexin 
receptor mRNA in the lateral hypothalamus of these obesity resistant 
(OR) rats [47].   Relative to OR rats, SD rats had reduced orexin levels, 
sleep fragmentation, decreased physical activity and became obese with 
age [48].

Since obesity has been associated with poor sleep quality, obesity 
resistance might be associated with better sleep quality, characterized 
by consolidated sleep/wake states. 

Sleep/wake patterns in ORR rats have been associated with elevated 
orexin receptor profiles in brain regions involved the regulation of 
vigilance states. In some studies have been measured 24h sleep/wake 
patterns and orexin receptor mRNA profiles in brain sites involved in 
sleep regulation, in OR and normally obesity susceptible SD rats at three 
months of age, an age when their weight gain profiles were significantly 
different.  Obesity resistant rats spend greater time awake primarily 
during the dark phase, have fewer number of and greater duration of 
sleep/wake episodes, less frequent transitions between different sleep/
wake states, and a lower sleep drive. 

These results indicate that during the normal active period, OR 
rats spent more time awake and had better sleep quality than obesity 
susceptible SD rats. This study lends additional support to our 
hypothesis that increased orexin signaling in sleep/wake regulatory 
sites enhances sleep quality and positively influences obesity resistance.

Orexin role in obesity and resting energy expenditure

Orexin system has a primary role in relation to obesity; in fact some 
pharmacological studies have demonstrated that icv injections of both 
orexin types have increased food intake and locomotor activity [49–
53]. A polygenic obesity model of rats, the obesity-prone (OP) and 
obesity-resistant (OR) rats, derived by inbreeding from Sprague Daw-

Apparatus

A pair of silver wire electrodes recorded the firing rate of nerves 
to IBAT. The electrical pulses were amplified by a condenser-coupled 
amplifier and were filtered by band-pass filters (NeuroLog System, 
Digitimer). The raw pulses were displayed on an oscilloscope 
(Tektronix) and sent to a window discriminator. Square waves from 
the discriminator were sent to an analog-digital converter (DAS 
system, Keithley) and stored on a computer (Personal Computer AT, 
IBM) every 5 s. A rate meter with a reset time of 5 s was also used to 
observe the time course of the nerve activity recorded by pen recorder 
(Dynograph, Beckman). Because signal-to-noise ratio depended on the 
number of nerve filaments and the condition of contact between nerve 
and electrodes, the basal burst rates were different for each rat. The 
threshold level of the event detector was fixed during the experiment 
at 50% of the peaks of the largest pulses and above background noise. 
Thermocouples (Ellab) were used to monitor colonic and IBAT 
temperatures (Tc and TIBAT) and the values were stored on a chart 
recorder.

Two electrodes applied to the forelegs monitored the heart 
rate (beats/min). Electrical signals were addressed to a poly- graph 
(Dynograph, Beckman) to record the electrocardiograph- ic activity on 
the card and on a computer disk.

Procedure

Usually the animals were anesthetized with ip pentobarbital (50 
mg/kg bw) and a 20-gauge stainless guide cannula was positioned 
stereotaxically above a lateral cerebral ventricle at the following 
coordinates: 1.7 mm lateral to the midline, 0.4   mm posterior to the 
bregma, 3.0 mm from the cranial theca.  Nerve activity was recorded by 
small nerve bundles dissected from the intercostal nerves supplying the 
right side of IBAT. Nerve filaments were isolated from the central cut 
end of these nerve bundles under a dissecting microscope; the efferent 
activity was recorded with a pair of silver wire electrodes. The nerve 
filaments were covered with a mixture of vaseline and liquid petroleum 
at 37°C to avoid dehydration. At the same time as the nerve activity 
was recorded the heart rate, Tc and TIBAT were monitored. Tc was 
measured by inserting the thermocouple into the colon 4 cm from the 
anus, while TIBAT was monitored by inserting the thermocouple in the 
left side of IBAT. Orexin was icv injected into the cerebral ventricle in 
rats which had received a drug or saline alone. The drugs were delivered 
into the cerebral ventricle by gravity flow over a 2 min interval. The 
cannula was 0.4 mm longer than the guide cannula.

Concept of obesity and its interindividual variability

Obesity (body mass index ≥ 30 kg of body weight/m2 of height) is 
a medical condition characterized by the accumulation of excess free 
fat [13] that can lead negative effects on health, resulting in a reduced 
life expectancy and increased health problems.  Obesity incidence in 
adults and children has increased in the last twenty years, especially 
in developed societies [26,27]. It is related to other diseases, including 
cardiovascular dysfunction, diabetes mellitus type 2, disorders of the 
osteo-articular system, stroke, metabolic syndrome and certain types 
of cancer [28]. Obesity is most commonly caused by a combination of 
excessive food intake, deficiency of physical activity and genetic suscep-
tibility, enough to be considered a multifactorial disease.

The genetic component in the etiopathogenesis of obesity has as-
sumed in last years an important role by identifying an increasing 
number of genes involved in the disease. The obesity in  the humans 
can depend by different genetic factors [29,30], but the major fac-
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utes to their obesity resistant phenotype. Indeed, it was seen that 
injections of orexin A in multiple brain sites increase levels of SPA 
with a consequent increase of the food intake, which should lead 
to a condition of obesity. Instead, the activation of the orexin system 
increases energy expenditure and has a protective effect against obesity. 
To demonstrate this, has been performed studies on rats through the 
implantation of cannulae into RLH were given graded dose of OXA. 
After postinjection were measured SPA and food intake and, as 
expected, the result was that both components increased. At this 
point OR rats maintained a lean phenotype, suggesting that the 
negative caloric benefit of OXA-induced SPA appears to outweigh the 
positive calories due to OXA-induced hyperphagia. Furthermore, other 
studies have shown that OR rats have higher endogenous SPA and are 
more sensitive to other SPA-promoting stimuli and appear to be intrin-
sically protected from treatments that lower SPA, such as high-fat diet 
feeding. Then, while OP rats manifest lower SPA levels after high-fat 
diet consumption, OR rats maintain high basal SPA levels and have 
greater OXA-induced SPA after high fat diet feeding [65]. Finally, it is 
worth remembering that over the orexin, other neurotransmitters are 
able to influence SPA levels, such as cholecystokinin, corticotrophin 
releasing hormone and leptin, but orexin is the most consistent across 
all brain sites and types of stimulation.

Conclusion
Orexin system leads to an increase of energy expenditure and SPA 

levels. A fundamental point of this review is the evidence that higher 
orexin signaling provides resistance to the development of obesity 
and this is possible through different mechanisms like an increase in 
synthesis or release of orexin peptides or changes in expression of the 
orexin receptor. It is important to understand the concept of orexin 
and its role in obesity resistance to find new therapeutic and preventive 
solutions against the excess body weight, in fact the stimulation of 
orexin receptors may be a valid therapeutic approach together with ap-
propriate low-calorie diet, frequent physical exercise and psychological 
proposal in order to build the foundation for preventive and curative 
therapy against obesity.
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