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Abstract

With the prevalence of obesity increasing worldwide, nonalcoholic fatty liver disease (NAFLD) has become the
most common form of chronic liver disease. Despite this, knowledge about the molecular mechanisms involved in
NAFLD progression is still limited. Recent findings have shown that endoplasmic reticulum (ER) stress links
inflammation and hepatocyte death, inherent to the transition from simple steatosis to nonalcoholic steatohepatitis
(NASH). Here, we emphasize the central role of the ER stress response and its crosstalk with the inflammasome.
We hope to provide new insight on the identification of ER stress-dependent pathways that contribute substantially
to chronic liver disease progression as important triggers of cell death and inflammation, and therefore may
represent potential therapeutic strategies.
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Commentary
Nonalcoholic fatty liver disease (NAFLD) encompasses a broad

spectrum of liver conditions ranging from simple steatosis to
steatohepatitis, cirrhosis and finally even hepatocellular carcinoma.
Little is known about the natural history or prognostic significance of
NAFLD. While hepatic steatosis is characterized by benign triglyceride
accumulation in hepatocytes, nonalcoholic steatohepatitis (NASH) is
defined as a combination of triglyceride accumulation, hepatocyte
death, inflammation and fibrosis. Therefore, it is important to
elucidate the molecular etiology of NASH, a multifactorial and
progressive form of NAFLD, to propose new therapeutic avenues [1-3].

Endoplasmic reticulum (ER) stress has been linked to obesity, type 2
diabetes and the pathogenesis of NAFLD. Obesity results in liver ER
stress, insulin resistance and hepatic steatosis in obese mice and
humans [4-7]. Although it is increasingly evident that the ER stress
pathway is also an important trigger of hepatocyte death (apoptotic
and potentially necrotic death) [8,9], and hence a potential accelerator
of inflammation leading to steatohepatitis, its link to inflammasomes
in hepatic disorders has just begun to emerge.

In particular, the NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome is a multi-protein complex that
ignites inflammation [10] and insulin resistance [11] in response to
metabolic danger signals. NLRP3 activation induces the recruitment
and assembly with its adaptor protein ASC and the procaspases-1 and
-11. Formation of this inflammasome complex leads to the
autocatalytic activation of the cysteine proteases caspase-1 and
caspase-11 and maturation of the proinflammatory cytokines
interleukin (IL)-1β and IL-18. Sustained NLRP3 inflammasome
activation has also been shown to trigger pyroptosis, a form of
programmed cell death, in hepatocytes [12].

Previous studies have shown that human liver biopsies obtained
from NASH patients present significantly increased inflammasome
(NLRP3, ASC, Caspase-1 [13] or NLRP3, IL-1β, IL-18 [14]) or ER
stress [15] gene expression. We, Lebeaupin et al., recently provided
further evidence that NLRP3 inflammasome and ER stress component
transcripts correlate with liver injury severity (NAFLD activity score
and alanine and aspartate transaminase levels) in NASH patients [16].
With our study, we were the first to show that ER stress and
inflammasome markers were also positively correlated, suggesting that
ER stress and the inflammasome signalling pathways cooperate and
exacerbate steatohepatitis progression. We demonstrated that ER stress
leads to proinflammatory, pyroptotic death through NLRP3
inflammasome activation specifically in hepatocytes. Using an
experimental mouse model of liver disease and primary hepatocytes,
we demonstrated that the overwhelmed inositol-requiring enzyme 1
(IRE1α) and PKR-like ER kinase (PERK) branches of the unfolded
protein response (UPR) converge on C/EBP homologous protein
(CHOP) activation, leading to NLRP3 inflammasome activation
through the increased activations of caspase-1 and caspase-11,
triggering hepatic pyroptosis and apoptosis [16].

Our results support a deleterious role of CHOP, and suggest that
CHOP may be the critical link between inflammasome activation and
hepatocyte death in the progression from steatosis to NASH. In line
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with this hypothesis, a previous study showed that lipopolysaccharide
(LPS)-induced inflammation activated the ER stress-CHOP pathway
that was crucial to caspase-11 activation. This then induced caspase-1
activation and led to the maturation and activation of IL-1β [17].
Consistent with a connection through CHOP, a study using an ER
stress-driven steatohepatitis mouse model has shown that a deficiency
in IL-1α leads to attenuated ER stress-induced hepatocyte apoptosis
and inflammation through decreased CHOP expression, thus
alleviating NASH. This study showed that ER stress induced the
expression of IL-1α, and further confirmed IL-1β secretion in both
macrophages and hepatocytes. The secretion of the lesser studied IL-1α
proinflammatory cytokine has also been suggested to be caspase-1 and
inflammasome-dependent [18]. However, the molecular mechanisms
involved in the direct activation of the NLRP3 inflammasome through
CHOP remain to be demonstrated.

Other links between ER stress and NLRP3 inflammasome activation
have been made through the thioredoxin-interacting protein (TXNIP),
known to increase concentrations of mitochondrial reactive oxygen
species (ROS) and recruit NLRP3, subsequently leading to
procaspase-1 cleavage and IL-1β secretion [19,20]. More specifically,
these studies respectively showed that the IRE1α-dependent decay of
the microRNA mir17 [19] and the PERK mediator ATF5 [20]
upregulated the levels of TXNIP under irremediable ER stress
conditions promoting programmed cell death of pancreatic β cells. In
line with this data, a recent study also emphasized that ER stress
modulates inflammatory responses by showing that during a bacterial
infection, IRE1α acts through TXNIP to induce ROS-dependent
NLRP3 activation, promoting mitochondrial damage via caspase-2 and
BH3-only protein Bid [21]. The function of TXNIP in inflammasome
activation in chronic liver diseases is quite limited. One study reported
a significant increase in TXNIP expression in NAFLD patients. They
also went on to show that TXNIP-deficient mice fed a high fat diet
were protected from hepatic steatosis development [22]. Nevertheless,
the function of TXNIP in inflammasome activation in chronic liver
diseases needs to be more thoroughly explored.

Another NLR protein, NLRP1 has also been shown to participate in
pyroptosis [23] and IL-1β secretion [24], but its involvement in UPR
signalling was not reported. Recently, both the IRE1α and PERK
branches were found to stimulate NLRP1 gene transcription through
ATF4, providing further evidence that links ER stress with
inflammasome activation [25].

Our recent results are opening up translational implications for the
biological knowledge, and eventually clinical treatment, of chronic
liver diseases. We indeed showed that a treatment with
tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, in obese
mice challenged with LPS dramatically reduced NLRP3 inflammasome
activation and protected against liver injury and hepatocyte death,
improving the NASH-pathological features [16]. In the past decade,
many reports have shown that ER stress can be alleviated by chemical
compounds, such as with the chemical chaperones 4-phenyl butyric
acid and TUDCA. Indeed, Hotamisligil et al. showed that the
treatment of obese and diabetic mice with these compounds resulted
in the resolution of hepatic steatosis and enhancement of insulin
action in liver, muscle, and adipose tissues, suggesting its potential
application in the case of the metabolic syndrome [26].

More specifically, Lerner et al. showed that a small-molecule called
STF-083010 that covalently inhibits IRE1α endoribonuclease activity,
effectively abrogated secretion of IL-1β [19]. Also targeting an IRE1α-
mediated pathway, a recent study using a cell-permeable-specific

inhibitor of GSK-3β, called SB216763, resulted in decreased
transcription, and consequently the secretion, of IL-1β [27]. It would
therefore be interesting to further explore the mechanisms of these
novel small-molecule inhibitors in the liver to test their potential
therapeutic effects on NASH progression.

It was reported that the inflammasome and IL-1 signalling were
required for the development of alcohol-induced inflammation,
steatosis, liver damage and fibrosis, and that the human IL-1 receptor
antagonist anakinra ameliorated inflammasome-dependent alcoholic
steatohepatitis in mice [28]. A recent study also supported a key role
for IL-1 signalling in the pathogenesis of excessive inflammation by
showing that anakinra prevented septic shock and improved survival
in LPS-challenged mice [29].

In light of these results, combining therapeutic strategies through
ER stress inhibition and inflammasome-response suppression could be
an attractive strategy in restraining NASH development.

Concluding Remarks
Because the ER stress response is a critical mediator of

inflammation, apoptosis and insulin resistance, it could play a central
role in the progression from steatosis to NASH, and more advanced
stages of the disease. With our results, we also suggest that targeting
ER-dependent inflammation and cell death pathways may represent a
novel approach to the treatment of chronic liver diseases.

There are of course major challenges associated with the translation
of findings from animal models of obesity and liver disease to human
NASH. Therefore, the potential clinical relevance of this ER stress-
inflammasome pathway must be further demonstrated. Consequently,
studies that aim to understand and ultimately prevent the progression
from steatosis to NASH through this signalling mechanism may have
real therapeutic promise for the treatment of chronic liver diseases, but
also for the treatment of diseases in which extensive cell death may
cause organ failure and expose organisms to further dangers.
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