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Introduction
Molecular oxygen is essential for supporting the life processes 

of all aerobic organisms. Under physiological conditions, oxygen 
is combusted in a highly controlled manner by the cell’s metabolic 
machinery to obtain chemical energy in form of ATP, and this process 
leads to the formation of reactive oxygen species (ROS) [1,2]. ROS are 
unstable molecules, which in small quantities are involved in cellular 
signaling, but become toxic when produced in large quantities by 
initiating oxidation of cellular components such as proteins, lipids, 
and DNA [1]. ROS are broadly classified into two groups, radical and 
non-radicals. Members of the radical group, often called free-radicals, 
have at least one unpaired electron in the outer orbital and therefore 
are highly reactive, as they readily donate or accept an additional 
electron to achieve stability [3,4]. This group includes compounds 
such as superoxide ion radical (O.

2
-), hydroxyl radical (OH.), nitric 

oxide radical (NO.), peroxyl (ROO.) and alkoxyl radicals (RO.) [1,5,6]. 
The non-radicals group includes compounds such as hypochlorous 
acid (HClO), hydrogen peroxide (H2O2), organic peroxides and 
aldehydes. In addition to endogenous ROS, exogenous compounds 
such as air pollutants, cigarette smoke, radiation, heavy metals etc., can 
generate ROS [7]. In order to protect from the continuous exposure of 
exogenous and endogenous ROS, organisms have developed a complex 
antioxidant system which include enzymatic (superoxide dismutase, 
catalase, glutathione peroxidase, etc.) and non-enzymatic (transferrin, 
ferritin, vitamin A and C, etc.) defenses. Failure to keep the equilibrium 
between ROS formation and antioxidant defenses leads to oxidative 
stress. This is characterized by an augmented generation of oxidant 
species and reduced antioxidant cellular capacity [2,8-11]. At molecular 
level, the oxidative damage to DNA cause polysaccharide ring cleavage, 
base modification or chain breakage, leading to mutations and altered/
failed gene transcription; damage to proteins can modify functional 
groups, such as addition of nitro radicals and carbonyl groups, resulting 
in altered activity, aggregation, fragmentation and/or cleavage; damage 

to lipids leads to formation of lipid aldehydes, lipid peroxides, causing 
changes in fluidity and permeability of membranes [6,12,13]. 

While ample information is available about the mechanism(s) of 
increased ROS generation, little is known about the regulating changes 
in antioxidant enzymes (AOE) expression [8]. At the gene expression 
level, many of the genes coding for AOE are controlled by the redox 
sensitive transcription factor NF-E2-related factor 2 (Nrf2), binding 
to promoter antioxidant responsive element (ARE) sites. These ARE 
elements are also present in the regulatory regions of many genes 
encoding phase-2 detoxification enzymes and various cytoprotective 
proteins, such as NAD(P)H:Quinoneoxidoreductase (NQO1) [14-16]. 
Nrf2 is a cap’n collar basic leucine-zipper transcription factor, which 
under normal physiologic conditions is sequestered in the cytoplasm 
by Kelch-like ECH associated protein 1 (Keap1), forming a complex 
bound to the cytoplasmic membrane through actin [17,18]. In the 
presence of elevated levels of ROS and cellular oxidative stress, Nrf2 
is released from this complex by conformational change in cysteine 
disulfide bonds of Keap1 [19-22]. Nrf2 is then phosphorylated at serine 
40 by protein kinase C and translocate to the nucleus [23], where it 
forms DNA-protein complexes with transcription factors belonging to 
the small musculoaponeurotic fibrosarcoma (Maf) and transcriptional 
co-activators, such as CREB binding protein (CBP) and p300, to initiate 
transcription of ARE-dependent genes [17]. Once the cellular redox 

Abstract
Reactive oxygen species (ROS) formation is part of normal cellular aerobic metabolism, due to respiration and 

oxidation of nutrients in order to generate energy. Low levels of ROS are involved in cellular signaling and are well 
controlled by the cellular antioxidant defense system. Elevated levels of ROS generation due to pollutants, toxins 
and radiation exposure, as well as infections, are associated with oxidative stress causing cellular damage. Several 
respiratory viruses, including respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza, 
induce increased ROS formation, both intracellularly and as a result of increased inflammatory cell recruitment 
at the site of infection. They also reduce antioxidant enzyme (AOE) levels and/or activity, leading to unbalanced 
oxidative-antioxidant status and subsequent oxidative cell damage. Expression of several AOE is controlled by 
the activation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2), through binding to the antioxidant 
responsive element (ARE) present in the AOE gene promoters. While exposure to several pro-oxidant stimuli usually 
leads to Nrf2 activation and upregulation of AOE expression, respiratory viral infections are associated with inhibition 
of AOE expression/activity, which in the case of RSV and hMPV is associated with reduced Nrf2 nuclear localization, 
decreased cellular levels and reduced ARE-dependent gene transcription. Therefore, administration of antioxidant 
mimetics or Nrf2 inducers represents potential viable therapeutic approaches to viral-induced diseases, such as 
respiratory infections and other infections associated with decreased cellular antioxidant capacity.
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status returns to equilibrium, Keap1 sequesters Nrf2 and directs it to 
Cul3-ubiquitin mediated proteasome degradation [17,21]. In the past 
few years, the Nrf2-Keap1/ARE system has been the focus of intense 
investigation, because of it possible role in the pathogenesis of several 
diseases [16,24]. 

Generation of oxidative stress has been reported in about 200 
diseases [24] and oxidative stress is thought to play an important 
pathogenic role in pulmonary disorders such as chronic obstructive 
pulmonary disease (COPD) [25] and asthma [26-28], cancer [29,30], 
neurological diseases, including Alzheimer’s [24,31], cardiovascular 
[32] and metabolic disorders, such as diabetes [33], vision disorders 
[34] and aging [35]. This review focus on Nrf2 and oxidative stress 
associated with respiratory viral infections with emphasis on respiratory 
syncytial virus (RSV), although other viruses, including human 
immunodeficiency virus (HIV), Hepatitis B and C have been shown to 
induce ROS in vitro and in vivo [36-39]. Free radicals generated during 
various respiratory viral infections are showed in Table 1.

Respiratory syncytial virus
RSV is an enveloped, negative-sense, single-stranded RNA virus 

belonging to Paramyxoviridae family, and is the leading cause of 
respiratory diseases in infants and young children. Annually in the 
US alone, RSV infections are responsible for more than 100,000 
hospitalizations among children <1 year of age and accounts for ~1.5 
million outpatient visits among children <5 years of age, with economic 
burden of more than $500 million/year [40-42]. Worldwide each year, 
an estimated 33.8 million new episodes of RSV-associated acute lower 
respiratory tract infections (ALRI) occur in children <5 years of age, 
with about 3.4 million children requiring hospital admission, and an 
estimated 66,000-199,000 fatal case, mostly in developing countries 
[43]. RSV infection is also a major concern in elderly people with 
chronic heart and lung diseases, and in immunocompromised patients 
[44]. Around 1500 to 7000 deaths due to RSV infection occur in 
the USA alone each year, especially in people >65 years of age [45]. 
Although RSV has been the focus of intense investigation for several 
decades, no effective drug or vaccine is currently available [46]. While 
the mechanisms of RSV-induced airway disease and its associated 
long-term consequences are not fully understood, lung inflammatory 
response and oxidative stress are important pathophysiological features 
of RSV lower respiratory tract infections [47]. This review focuses on 
the potential role of oxidative lung damage in RSV pathogenesis and 
possible novel therapeutic approaches targeting ROS formation and 
Nrf2 activation in the context of this, as well as other respiratory viral 
infections.

ROS generation in RSV infection

As mentioned before, ROS formation occurs as part of aerobic 
cellular metabolism and plays an important role in cellular signaling, 

leading to the expression of a variety of molecules, including 
proinflammatory mediators, such as cytokines and chemokines [48]. 
If ROS are not neutralized by cellular antioxidant systems, they can 
cause extensive cellular and tissue damage. Many of the features of 
acute and chronic lung diseases, such as bronchoconstriction, airway 
hyper reactivity, enhanced mucous secretion, epithelial cell damage, 
and microvascular leakage, have been shown to be associated with 
oxidative stress due to increased generation of ROS [28]. RSV infection 
has been reported to enhance ROS formation in airway epithelial 
cells, the primary target of infection, as measured by the fluorescent 
probe 2’,7’ dichlorodihydrofluorescein diacetate [49-52]. RSV infection 
leads to the release of superoxide, H2O2and myeloperoxidase (MPO) 
in the extracellular environment by inducing the recruitment and 
activation of neutrophils and eosinophils into the airways [53,54]. ROS 
generation in airway epithelial cells during RSV infection was recently 
summarized in a review by Garofalo et al. [47]. Several NADPH oxidase 
inhibitors, including diphenyleneiodonium chloride (DPI), apocynin, 
and 4-(2-aminoethyl) benzene sulfonyl fluoride (AEBSF), inhibit 
RSV-induced cellular signaling in airway epithelial cells, in particular 
chemokine expression, as well as activation of the transcription factors 
interferon regulatory factor-3 (IRF-3), signal transducer and activator 
of transcription (STAT)-1 and the upstream kinase inhibitor of κB 
kinase epsilon (IKKε) [55-58]. 

In regard to other respiratory viruses, rhinovirus infection has been 
associated with superoxide and hydrogen peroxide production through 
NOX1 [59] and influenza infection generates superoxide through 
NOX2 [60], as shown in Table 1.

Oxidative stress in RSV infection

RSV-induced ROS formation is associated with significant cellular 
oxidative stress in vitro as well as in vivo, as a result of disruption of 
the fine balance between pro-oxidant and antioxidant factors. During 
RSV infection of airway epithelial cells, SOD 2 expression and activity 
progressively increases, with a progressive decrease in the expression 
of all the other tested AOEs such as SOD 1, SOD 3, catalase, GST 
expression, and GPx activity. These changes in AOE expression suggest 
that increased amounts of superoxide, generated by RSV through 
NADPH oxidase, could result in accumulation of H2O2 by increased 
SOD 2 activity and reduced activity of catalase, GST and GPx [8]. The 
non-detoxified H2O2, as well as other radicals generated from H2O2auto-
oxidation in presence of transition metals, such as the hydroxyl radical 
(.OH), reacts with lipids, proteins and DNA, causing structural cellular 
damage. Proteomics studies have also shown that several AOEs, from 
peroxiredoxins to catalase, SOD 1, GPx 1 and various forms of GST, 
are significantly decreased in the lungs of infected animals compared 
to uninfected (Table 2 summarizes all antioxidant proteins whose 
expression in broncho alveolar lavage (BAL) changes in response to 
RSV infection). Decreased expression/activity of antioxidant proteins 

Virus Free radical generated Effect Host proteins associated with oxidative stress Ref

Rhinovirus
superoxide (O2

−), hydrogen 
peroxide (H2O2)

airway inflammation activation of xanthine oxidase; reduced concentration of glutathione (GSH) 
and increased activity of NADPH oxidase 1 (NOX1) [59,84-87]

Influenza 
Virus

O2
−, nitric oxide (NO)

enhanced viral 
mutations, replication 

and airway inflammation

reduced concentrations of catalase, glutathione and super oxide 
dismutase (SOD); Increased activity of NADPH oxidase 2 (NOX2) [60,66,88-91]

RSV

NO, O2
−, H2O2 airway inflammation 

virus induced nitric oxide synthase (iNOS) activity; progressive decrease 
of antioxidant enzymes SOD 1, SOD 3 and Catalase; reduced nuclear 

translocation of Nrf2 and Nrf2-ARE driven transcription

[8,11,52,92]
(Casola A, unpublished 

observation)

hMPV O2
−, H2O2 airway inflammation 

progressive decrease of antioxidant enzymes SOD 3, catalase, GST, 
and Prdx; reduced nuclear translocation of Nrf2 and Nrf2-ARE driven 

transcription

[11,63]
(Casola A, unpublished 

observation)

Table 1: Free radicals generated in response to respiratory viral infections.
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Potential regulatory mechanism of AOE expression in RSV 
infection

The exact mechanism of decreased expression of AOEs during RSV 
infection, as well in the context of other viral respiratory infections, is 
largely unknown. Most of the AOE gene expression is regulated in part 
through ARE sequences and Nrf2 activity [30,67]. Transcription factor 
Nrf2 is an important redox-responsive protein that protects the cells 
from oxidative stress and injury (Reviewed in [16]). Nrf2-dependent 
AOE gene expression might be reduced by: (i) competition for binding 
to the ARE site - Bach1/small Maf protein complex or AP-1 family 
transcription factors like c-Fos and FRA1 can bind to ARE acting as a 
transcriptional repressor [67,68]; (ii) preventing Nrf2 activation through 
direct physical association - Activating transcription factor (ATF)3 or 
retinoic acid receptor α were shown to form inhibitory complexes with 
Nrf2, leading to displacement from ARE elements; (iii) interfering 
with recruitment of co activators, such as CBP, to the ARE site - NF-
κB activation can lead to decreased availability of CBP and promote 
the recruitment of co repressors (histone deacetylases) at Nrf2-ARE 
site [67]; (iv) reduced nuclear levels, which can occur due to enhanced 
nuclear to cytoplasm efflux or increased Nrf2 degradation [8]. A recent 
study has shown that RSV infection in Nrf2-/-mice is more severe and 
associated with higher viral titers, augmented inflammation, enhanced 
mucus production and epithelial injury compared to Nrf2 wild type 
mice, indicating the protective role of Nrf2-ARE pathway against RSV 
infection [69]. RSV infection can indeed induced a progressive decrease 
in ARE-dependent gene transcription in A549 cells, carcinoma-derived 
type II-like airway epithelial cells, investigated using luciferase reporter 
gene assays (Figure 1A, left panel)[47]. A similar result was obtained 
when cells were infected with hMPV (Figure 1A, right panel). Reduced 
nuclear levels of Nrf2 was observed in both RSV infection (Figure 1B, 
left panel) [8] and hMPV infection (Figure 1B, right panel), together 
with increased nuclear levels of known ARE transcriptional repressors 
such as Bach1 and ATF3 (Casola A, unpublished observation) [47], 
suggesting a potential mechanism for viral-induced down regulation 
of AOE gene expression. As Nrf2 positively regulates its own gene 
transcription, reduced Nrf2 mRNA levels were observed in airway 
epithelial cells at late time point of RSV infection [8]. Our recent studies 
indicate that RSV infection is associated with Nrf2 deacetylation, 
likely due to RSV-induced upregulation of histone deacetylase 

was confirmed in vivo, both in a mouse model of RSV infection as well 
as in children with severe bronchiolitis [11].

Lipid peroxidation refers to the oxidative degradation of lipids. It 
is the process in which free radicals “steal” electrons from the lipids 
in cell membranes, resulting in cell damage. It most often affects 
polyunsaturated fatty acids. The end products of lipid peroxidation 
are reactive aldehydes, such as malondialdehyde (MDA) and 
4-hydroxynonenal (HNE), the second one being known also as 
“second messenger of free radicals” and major bioactive marker of 
lipid peroxidation, due to its numerous biological activities resembling 
activities of reactive oxygen species. In addition to MDA and HNE, 
8-isoprostane are also considered markers of cellular oxidative stress, 
as they are formed in vivofrom the free radical-catalyzed peroxidation 
of essential fatty acids (primarily arachidonic acid) without the direct 
action of cyclooxygenase enzymes. The unbalance between ROS 
formation and antioxidant defenses leads to oxidative stress during 
the course of RSV infection, as it has been demonstrated by the 
increased formation of lipid peroxidation products both in vitro and 
in vivo models of infection [8,61], as well as in patients with primary 
RSV infection, in which the levels of 8-isoprostane, as well as MDA 
and HNE present in respiratory secretion correlate with the severity of 
infection [11].

In addition to RSV, the closely related human metapneumovirus 
(hMPV), which is also a common cause of lower respiratory tract 
infections in children [62], significantly affects AOE expression in vitro 
and in vivo. Microarray analysis of gene expression studies from hMPV 
infected airway epithelial cells demonstrated progressively decreased 
levels of SOD 3, catalase, GST and peroxiredoxin gene expression and 
protein levels, with a concomitant increase in SOD 2 [63], similar to 
what has been observed with RSV. These changes in AOE expression 
was also observed in a mouse model of hMPV infection [11]. Such an 
increase in SOD 2 expression and decreased expression of catalase, as 
well as decreased GSH/GSSG ratio, has also been reported in influenza 
infection both in vitro and in vivo [64-66]. Taken together, this 
information suggests that airway oxidant-antioxidant imbalance could 
play a very important role in the pathogenesis of RSV-induced lung 
disease and possibly other respiratory viral infections.

Fold Change in RSV BAL Compared to Control
AOE Day 1 Day 3 Day 5 Day 9 Day 25

1-Cys peroxiredoxin protein −1.0 −6.1 — −4.1 —
Catalase — −2.5 −2.1 — —

Cu/Zn SOD 1 −2.3 −3.4 −2.0 −2.0 —
Glutathione peroxidase 1 −1.8 −2.3 — 1.3 —
Glutathione S-transferase — — — −6.0 —

Glutathione S-transferase omega 1 −6.8 −3.6 −2.3 −2.0 1.3
Glutathione S-transferase, alpha 4 −2.2 — — — —
Glutathione S-transferase, mu 1 — −4.0 −7.0 −1.7 1.4
Glutathione S-transferase, mu 2 — −4.3 — 3.4 −1.3
Glutathione-disulfide reductase — — — 3 —

Nonselenium glutathione peroxidase −2.6 — −4.2 −1.3 1.2
Peroxiredoxin 6 — −3.1 −3.9 −4.1 1.3
Peroxiredoxin 2 2.7 2.4 −2.1 1.7 —
Thioredoxin 1 — 1.5 — — 1.1

Table 2: Differential expression of antioxidant proteins in bronchoalveolar lavage of respiratory syncytial virus-infected mice.
Shown are high probability antioxidant protein identifications and their expression (in terms of fold changes in RSV BAL compared to control mice) at different days of p.i. 
from peptide mass fingerprinting in MALDI-TOF/MS. BAL, bronchoalveolar lavage; —, not determined. 
Reprinted with permission of the American Thoracic Society.Copyright © 2014 American Thoracic Society [8,11].
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Figure 1: RSV and hMPV infection modulates ARE-dependent gene transcription (A) A549 cells were transiently transfected with a plasmid containing multiple 
copies of the NQO1 ARE site linked to the luciferase gene and then infected with either RSV (Left panel) or hMPV (Right panel). Cells were harvested at different 
times post-infection to measure luciferase activity. Uninfected cells, transfected with reporter plasmid only and mock-infected, served as controls. For each plate 
luciferase was normalized to the β-galactosidase reporter activity. Data are expressed as mean ± standard deviation of normalized luciferase activity. *P<0.05 
relative to RSV or hMPV infected cells. (B) Nuclear extracts prepared from A549 cells infected with RSV (left panel) or hMPV (right panel) for various periods of 
time post infection (p.i.) were subjected to western blot with anti Nrf2 antibody. Membranes were stripped and reprobed for lamin B as an internal control for protein 
integrity and loading.

Figure 2: Schematic representation of the proposed mechanisms of oxidative cell damage during RSV infection. RSV infection of airway epithelial cells 
leads to increased superoxide formation and increased H2O2 production, due to up regulation of SOD 2 expression and activity. RSV-induced inhibition of Nrf2 
activation, due to proteasome-dependent degradation, causes a progressive decrease in the expression of a variety of AOEs involved in H2O2 detoxification 
leading to accumulation of highly reactive radicals, such as hydroxyl radical, and subsequent cellular damage (* autoxidation in presence of transition metals).
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(HDAC) activity, and increased degradation, which occurs through 
the ubiquitin-proteasome pathway. Blocking proteasome and class I 
HDAC activity, in particular HDAC 1 and 2, rescued Nrf2 activation 
and ARE-dependent gene expression during RSV infection (Casola 
A, unpublished observation). A summary of findings and a proposed 
model of RSV-induced oxidative stress in airway epithelial cells are 
depicted in Figure 2.

In regard to other respiratory infections, Yageta et al. showed 
that influenza infection in Nrf2-deficient mice is associated with 
increased mortality, compared to wild type mice, when animal are 
exposed to cigarette smoke. Nrf2-deficient mice could not control 
the oxidative stress caused by cigarette smoke and showed enhanced 
peribronchial inflammation, lung permeability damage, and increased 
mucus secretion [70]. Inhibition of Nrf2-dependent gene expression in 
differentiated human nasal epithelial leads to increased influenza virus 
entry and replication, due to increased oxidative stress [39]. In addition, 
overexpression of Nrf2 in alveolar type II cells provides protection from 
influenza infection by reducing oxidative stress and viral replication 
[71]. These data suggest that Nrf2 plays an important role in influenza 
infection by controlling ROS formation, viral replication and lung 
injury.

Therapeutic approaches
Since oxidative stress seems to play an important role in the 

pathogenesis of RSV, and possibly other viral-associated lung 
diseases, antioxidant intervention would represent a rational 
approach for treatment of lower respiratory tract infections. Table 3 
shows antioxidant therapies tested against various respiratory viral 

Virus Antioxidant Effects Ref

Rhinovirus
Glutathione Scavenge free radicals and suppress NF-κBinduced Intercellular adhesion molecule-1 

(ICAM-1) receptor for rhinovirus [84]

Pyrrodolinedithiocarbonate (PDTC) Inhibited viral replication in vitro [93]

Influenza 
Virus

Thiol antioxidants 
Pyrrodolinedithiocarbonate (PDTC)

Scavenge OH- free radicals and 
Inhibited synthesis negative strand RNA and viral replication in vitroand in vivo [72,94]

N-Acetyl-L-cysteine (NAC) Inhibited induction of apoptosis and pro-inflammatory cytokines such as IL-6, IL-8 and 
RANTES [95,96]

Glutathione Inhibited induction of apoptosis and viral replication in vitroand in vivo [97,98]
Hydroxyl antioxidants/Polyphenols 

Nordihydroguaiaretic acid (NDGA) 
scavenge O2

-, OH-radicals and H2O2and 
Inhibited viral replication through inhibiting intracellular transport of viral glycoproteins [99-104]

Thujaplicin Inhibited induction of apoptosis and viral replication in vitro [100]

Resveratrol Blocked nuclear cytoplasmic translocation viral ribonucleoproteins and reduced 
expression of late viral proteins and resulted in reduced viral replication in vitroand in vivo [101]

Ambroxol Suppressed proliferation of virus in vivo [103]
Ascorbic acid inhibited the proliferation of virus in vitro [104]
 Flavonoids 
Catechins

Scavenge O2
- and Inhibited viral replication by inhibiting activities of hemagglutininn, 

neuraminidase and suppressing viral RNA synthesis in in vitro and in vivo [105-107]
Quercetin 3-rhamnoside Inhibited viral replication by inhibiting viral mRNA synthesis [106]

Isoquercetin Inhibited viral replication and pro-inflammatory cytokines [107]
Antioxidant enzymes 

SOD, Catalase
 scavenge O2

-/OH- free radicals; restores redox status in vitro and in vivo; enhances 
recovery [70,108-111] 

Nrf2 inducers 
Sulforaphane antiviral activity [39]

RSV

Thiols
NAC

scavenge H2O2, OH-free radicals, and hypochlorous acid; suppress NF-κB activation and 
viral replication [51,112]

Polyphenols 
Resveratrol

reduced IFN-γ levels associated with RSV-mediated airway inflammation and AHR; inhibit 
TRIF signaling pathway [113,114]

SOD significantly reduced pulmonary viral titers [73]
SOD Mimetics scavenge ROS and inhibit chemokine secretion in vitro [8,78]

Nrf2 inducers 
Sulforaphane BHA and tBHQ

antiviral activity in mouse; scavenge ROS by inducing expression of antioxidant enzymes 
and inhibit chemokine secretion in vivo and in vitro; mice treated with BHA recovered 

faster

[61,69] Casola 
A, (unpublished 

observation)

Table 3: Antioxidant therapy against respiratory viruses.

infections. Antioxidants reduce oxidative stress by quenching free 
radicals and help the host to function properly. Our group has tested 
two complementary approaches that can affect the outcome of RSV-
associated lower respiratory tract infections: (i) SOD mimetics that can 
scavenge free radicals and reduce oxidative stress in RSV infected cells 
and; (ii) induction of airway antioxidant defenses by modulating AOE 
gene expression/activity.

SOD mimetics: SOD 1 and 2 administration and SOD 3 
overexpression have been shown to protect mice lungs from influenza-
induced oxidative stress damage [72]. Both SOD 1 and 2 administration, 
either parenterally or intranasal in a cotton rat model of RSV infection, 
reduced pulmonary viral titer [73]. In the past few years, quite a few 
classes of synthetic SOD mimetics that are based on organo-manganese 
complexes have been developed and explored as possible therapeutics 
against oxidant-related lung damage [74]. In a recent study, the 
effect of airway epithelial cell treatment with various Eukarionsalen-
manganese complexes (EUK) on cellular signaling and oxidative stress 
in response to RSV infection was assessed. EUKs are synthetic salen-
manganese complexes that exhibit SOD and catalase activities [75]. 
Salen complexes are Schiff bases, usually prepared by the condensation 
of a salicylaldehyde with an amine. Based on the salen ring substitutes, 
EUKs are named from EUK-8 to EUK-189 and have different rates 
of SOD and catalase/peroxidase activities [76,77]. Treatment of RSV-
infected airway epithelial cells with EUK-8, -134 and -189, which have 
SOD and catalase/peroxidase activity, results in significantly reduced 
ROS levels (Figure 3A) and markers of oxidative cell damage (Figure 
3B). In addition, EUK treatment is associated with reduced activation 
of the viral-induced transcription factors NF-κB and IRF-3 and reduced 
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secretion of cytokines and chemokines [8,78]. Enhancement of both 
SOD and catalase/GPx activities is important to reduce ROS levels 
and pro-inflammatory gene expression during RSV infection, as EUK-
163, which has no significant catalase or peroxidase activity, does not 
have a significant effect on RSV-induced pro-inflammatory mediator 
secretion [8]. In addition, EUK treatment in high concentration (500 
µM) significantly reduce viral replication [78], suggesting that EUKs 
could represent a novel therapeutic approach to modulate RSV-induced 
lung damage.

Nrf2 inducers:Several compounds that stimulate Nrf2-ARE driven 
transcription have been identified from natural and dietary sources, 
metabolites, and synthetic agents. Nrf2 inducers are broadly divided 
into Triterpenoids that include oleanolic acid and ursolic acid (natural); 
oleanane triterpenoids, 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic 
acid (Synthetic) [79,80]; Isothiocyanates including sulforaphane, found 
mainly in cruciferous vegetables; polyphenols including flavonoids 
quercetin and EGCG and the non-flavonoids curcumin, resveratrol and 
butylated hydroxyanisole (BHA) [81,82].

Sulforaphane modifies a number of cysteine residues in Keap1 
through formation of carbamodithioate and releases Nrf2 that leads 
to increased nuclear localization of Nrf2 and ARE transcription 
[82]. Sulforaphane pretreated nasal epithelial cells during influenza 
virus infection showed significantly increased levels of Nrf2 and 
HO-1 associated with reduced hemagglutinin gene expression and 
viral replication [39]. In a model of RSV infection, mice treated with 
sulforaphane showed significantly reduced numbers of neutrophils and 
eosinophils in BAL after infection [69], suggesting that this compound 
has the potential for modulating viral-induced oxidative stress and 
disease.

BHA and t-Butyl hydroquinone (tBHQ) treatment induces phase 
II enzymes HO-1 and NQO1 via Nrf2-ARE transcription in rat and 
human hepatocytes [83]. Hence, BHA was assessed for its ability to 
modulate oxidative stress in a mouse model of RSV infection. BHA 
treatment significantly attenuated RSV-induced lung oxidative stress, 
as indicated by decreased markers of oxidative damage in BAL of RSV-
infected mice. In addition, lungs of BHA treated mice showed reduced 
cytokine and chemokine secretion [61]. The beneficial effect of BHA 
and tBHQ in RSV-induced lung inflammation and oxidative stress 
could be in part ascribed to the ability of these phenolic compounds 

to modulate Nrf2-dependent gene expression, in addition to directly 
scavenging ROS formed in response to the viral infection. Preliminary 
studies revealed that treatment of airway epithelial cells with tBHQ 
significantly increased ARE-dependent gene transcription and 
Nrf2 protein expression. tBHQ treatment rescued Nrf2-ARE driven 
activity during RSV infection and also ameliorated RSV induced 
oxidative damage as demonstrated by reduced lipid damage (Casola A, 
unpublished observation).

Conclusion
Respiratory tract infections are a leading cause of morbidity and 

mortality worldwide. RSV and other viruses such as influenza and 
hMPV are a major cause of pediatric upper and lower respiratory 
tract infections, associated with bronchiolitis, pneumonia and flu-like 
syndromes, as well as asthma exacerbations. There is still no vaccine 
or effective treatment available for RSV infections, as well as for many 
other respiratory viruses, necessitating an explicit understanding of the 
pathogenic mechanisms associated with these infections. As oxidative 
stress is likely to play an important role in initiating and sustaining 
lung injury and inflammation, approaches that combine scavenging 
ROS together with the inhibition of viral replication, may be effective 
in modulating severe lung disease associated with RSV and other viral 
respiratory infections. This could be obtained by either administration 
of antioxidant compounds that possess antiviral activity, in addition to 
ROS scavenging properties, or by combining antivirals with compounds 
capable of increasing lung antioxidant defenses, such as AOE mimetics 
or Nrf2 inducers. These treatment approaches would be effective only 
if compounds are available at the site of infection, therefore route of 
administration, bioavailability, tissue distribution are all important 
parameters that will need to be taken into consideration when planning 
future therapeutic intervention.
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