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Background
Pseudomonas aeruginosa (P. aeruginosa) is a gram negative 

bacterium that often contaminates water and is a formidable 
opportunistic pathogen responsible for some of the most severe 
infections of the eye, including bacterial keratitis and endophthalmitis 
[1]. Contact-lens related infectious keratitis is the most common 
presentation of ocular P. aeruginosa infection. Soft, extended-
wear contact lenses are the most common culprit. Visual loss is a 
consequence of subsequent scarring of the cornea and in fulminant 
cases can lead to perforation or extension into surrounding tissues. 
Several factors mediate the virulence of this organism including flagella, 
adhesins, toxin secretion, proteases and pili [2]. Our knowledge of the 
pathogenesis of pseudomonal ulcers is largely owed to animal models, 
particularly rodents, and now an extended wear contact lens fitted in 
the rat allows simulation of the natural evolution of the disease [3].

The investigations into bacterial keratitis have brought to light 
that although exoenzymes secreted by pathogenic bacteria initiate the 
insult to the cornea, much of the degradation of host tissue occurs as 
a consequence of uncontrolled inflammation with release of potent 
immunological mediators from corneal cells and infiltrating white 
blood cells, predominately neutrophilic (PMN) leukocytes [4,5].

Epidemiology in Contact Lens Wear
Up to one-third of emergency room visits for corneal infection are 

contact lens wear- related corneal infection as contact lens wear imparts 
a tenfold increase in the risk for corneal infection. As much as 19-
42 percent of bacterial keratitis is related to contact lens usage. The risk 
increases fifteen-fold for those who sleep in their contact lenses [2]. 
Even with the advent of silicone hydrogel lenses with high DK/t oxygen 
transmissibility, the rate of bacterial keratitis appears to have remained 

unchanged [6]. There are now an estimated 38 million contact lens 
wearers in the US. Annual incidence of microbial keratitis continues 
to rise and now accounts for 930,000 outpatient visits and 58,000 
emergency department visits per year [7]. The immunocompromised, 
debilitated and hospitalized as well as those in tropical climates are also 
susceptible to pseudomonal infections [8]. This imparts a significant 
burden on the healthcare system with a financial cost of approximately 
175 million USD/year [7]. There are other important factors in addition 
to contact lens wear that also can result in eye infections with this 
pathogen, including agricultural accidents, but they are not the focus 
of this review.

Diagnosis
A careful medical history will often reveal contact lens wear. 

For microbial keratitis, general presentation consists of symptoms 
including photophobia, decreased vision and pain. Clinical findings 
may include conjunctival injection, single focal ulcer with well-
delineated loss of epithelium associated with an ill-defined suppurative 
stromal infiltrate. There is often accompanying corneal edema, 
mucopurulent exudate and anterior chamber reaction with possible 
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untreated, corneal perforation and endophthalmitis can occur, resulting in loss of the eye. Damage to the cornea can 
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In vitro studies demonstrate that epithelial cells from corneas when 
exposed to bacterial factors isolated from extended wear contact lenses 
for at least 72 hrs, have impaired expression of antimicrobial peptide 
human β-defensin -2 (hBD-2) and surface protein D [15,16]. Defensins 
have been studied in murine models of the disease and found to be 
present in the normal cornea of both BALB/c and C57BL/6 (B6) mice. 
Once the corneas of these mice were inoculated with P. aeruginosa, there 
was a marked upregulation of murine β-defensins (mBD) 1 and 2 in 
the BALB/c resistant mice. To evaluate the significance of this finding, 
siRNA was administered to knockdown mDB1 and 2. The silencing 
of mBD2 in BALB/c mice resulted in increased disease severity and 
corneal damage, however no significant effect was found when 
interfering with mBD1 [17]. The mouse homologs of human (h) BD2 
and 3 are mBD3 and 4 and their function was also studied in the mouse 
model of P. aeruginosa keratitis. It was found that mBD3 but not 4 was 
integral in host defense in BALB/c resistant vs B6 susceptible (cornea 
perforates after infection) mice. Not only was mBD3 upregulated in 
BALB/c mice but it interacts with mBD2 to augment host defense 
against infection. Using siRNA, mBD4 knockdown had no appreciable 
effect; however mBD3 silencing revealed worsened corneal disease 
[18]. These defensins and their disparate expression in the two mouse 
strains may be, at least in part, the etiology for resistant vs susceptible 
mouse phenotypes.

Invasion– This process involves microbial proteases with 
keratolytic action leading to liquefactive necrosis of epithelial, stromal 
and endothelial cells, exotoxin A and S that function to prevent host 
protein synthesis, and leukocidin and haemolysins which create the 
environment for infiltration of bacteria. More specifically, leukocidin 
is a protein secreted by the organism which imparts toxicity to PMNs 
altering membrane permeability, permitting calcium entry and fusion 
of nuclear components [19]. These releasable exotoxins with a type 
III secretion system are especially capable of causing tissue necrosis 
in the cornea due to the avascular nature of the tissue which delays 
delivery of first-line host response cells such as PMNs [1]. Type III 
secretion delivers ExoS, ExoT and ExoU exotoxins into the cytosol and 
functions to prevent attack of bacteria as well as to promote PMN death 
[20]. Invasive strains typically express the exoS gene and are known 
to readily invade epithelial cells whereas cytotoxic strains express 
the exoU gene and release a phospholipase that induces host tissue 
necrosis in 1-2 hrs [21]. Contact lens wearers tend to be infected with 
the cytotoxic and/or invasive strains of P. aeruginosa [22]. Exotoxin A, 
found in 90 percent of P. aeruginosa species, is released by the organism 
and functions to inhibit host protein synthesis via ADP-ribosylation of 
elongation factor 2 [23]. Neutral protease, or elastase, is destructive to 
elastin although not native to the cornea; it also acts on proteoglycans 
which are present in corneal stroma in two types: decorin and lumican. 
The destruction of proteoglycans causes separation of collagen fibrils 
and loss of integrity of the normal compact lamellae of the cornea 
[24]. This loss of architecture and inflammation in the cornea leads 
to corneal edema and significant decreases in visual acuity as well as 
increased discomfort in the patient. Exotoxin T also predominates in 
pseudomonal corneal ulcers, co- expressed with exo S and functions 
to facilitate PMN death, knocking out an important component of the 
first line of host defense [25]. ExoU is expressed in only 10 percent 
of isolates and is a phospholipase capable of inducing inflammation 
and causing degradation of tissue [20,26]. These strains are identified 
as cytotoxic strains with the primary effect being cell lysis, whereas 
ExoS/T strains are non-cytotoxic and are functionally invasive via 
alteration of epithelial cell membranes and replication within these 
surface cells. The cytotoxic phenotypes tend to cause more aggressive 
infection and severe disease [27,28].

hypopyon formation. However, presentation alone is not predictive of 
a specific microbial pathogen, thus corneal scraping and culture should 
be performed prior to initiation of empiric broad-spectrum antibiotic 
therapy [2]. In the case of P. aeruginosa, disease presentation often 
consists of a corneal ulcer paracentrally located with a ring of infiltrate 
and yellow coagulative necrosis with stromal ulceration, epithelial 
edema and mucopurulent exudate in addition to the general symptoms 
described above [9].

Pathogenesis
Contact lenses increase the likelihood of corneal infection due to 

several factors including extended exposure of the eye to contamination 
via the foreign body, disturbance to the natural tear film, microtrauma 
to the corneal surface epithelium, perturbation of the immune function 
at the surface of the eye, hypoxic status of the cornea in the setting 
of contact lens wear and improper lens or eye hygiene leading to 
inoculation of the ocular surface [2]. The eye is also predisposed to 
infection with P. aeruginosa in the setting of other ocular pathology 
including Herpes simplex infection, immunocompromise and ocular 
trauma [1]. Once the eye is inoculated with P. aeruginosa, there is 
adherence to the epithelium, followed by invasion into the corneal 
stroma and subsequent proliferation which is often exaggerated by 
the host immune reaction. It has been suggested that adherence of the 
organism to epithelium can occur within 15 minutes and bacteria reach 
the stroma in as little as 60 minutes [10].

Adherence– The tear layer overlying the cornea plays an important 
role in the defense against microorganisms. It not only provides 
lubrication and a physical barrier with layers composed of lipid, 
mucin, and aqueous, but contains factors involved in healing including 
epidermal growth factor. Lactoferrin, defensins, and IgA are also found in 
the tear film to protect against bacterial invasion. Interleukin-1 receptor 
antagonist (IL-1RA), transforming growth factor β (TGF-β) and 
tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) all play a 
role in protecting the cornea from uncontrolled and unregulated 
inflammation [11]. As demonstrated by Dart and Seal in the rabbit 
model, P. aeruginosa was undetectable in the cornea within 4 hrs of 
inoculation unless trauma was induced [1]. Hypoxia is appreciated 
as a major predisposing factor for the bacteria to invade the cornea. 
It is thus important to recognize that PMNs are equipped to function 
under very low O2 conditions still using the glycolytic pathway with 
the assistance of hypoxia-inducible factors (HIF-1α) [12]. HIF-1α is a 
transcription factor that has been studied in BALB/c mice which resist 
infection (cornea does not perforate) but when this factor is suppressed 
using siRNA and/or antagonist 17-DMAG, the resistant phenotype is 
lost. There was no change in the number of PMNs or cytokines present, 
however there was a downstream effect whereas nitric oxide (NO) 
production was compromised, as well as bacterial killing and host cell 
apoptosis [13]. Zaidi et al. [14] investigated the role of cystic fibrosis 
transmembrane conductance regulator (CFTR) expression in rabbit 
and human corneas subjected to hypoxia for 24-72 hrs and found CFTR 
had increased expression as well as NF-κB levels, which augmented the 
ability of P. aeruginosa to bind to epithelial cells, penetrate the cornea 
and induce a local inflammatory reaction.

In the setting of trauma, adherence is mediated by surface 
pili and glycocalyx allowing attachment to the epithelium. P. 
aeruginosa glycocalyx has been found to be immunogenic but 
not directly toxic to the cornea [1]. This extra-cellular mix of 
lipopolysaccharide and glycolipoprotein functions to inhibit migration 
and endocytosis of PMNs [13].
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Host Inflammation- Release of host cytokines and chemokines 
recruiting host inflammatory cells are delivered to the avascular cornea 
via the tear layer and conjunctival blood vessels at the corneal limbus. 
Leukocytic cells release matrix metalloproteinases precipitating 
necrosis of the cornea tissue [2]. PMNs are critical for the elimination 
of pathogens especially early in infection. However phagocytosis has 
unwanted secondary consequences due to degranulation of PMNs 
that lead to innocent bystander damage, including destruction of 
epithelium and stroma leading to corneal necrosis [29]. PMNs have 
also been implicated in the scarring and perforation that can occur with 
pseudomonal infection [30]. Immune recognition of the bacterium in 
macrophages is mediated by the IPAF/NLRC4 inflammasome [31] but 
in keratitis (murine) PMN serine proteases were found of importance 
[32]. Murine models of pseudomonal keratitis have been long 
established and continue to provide valuable insight into the complex 
interaction between direct toxicity of P. aeruginosa on the cornea and 
local host factors that collectively contribute to tissue destruction. 
Macrophage inflammatory protein-2 (MIP-2) and KC in the mouse are 
chemokines analogous to interleukin 8 (IL-8) and GROα in humans 
which function to recruit and activate PMNs. MIP-2, in particular is 
found at increased concentrations in B6 “susceptible” mouse models 
of P. aeruginosa keratitis whose infected cornea perforates [33]. IL-
1β is a cytokine produced by macrophages, monocytes and corneal 
cells alike upon infection, and has been found to contribute to PMN 
recruitment. Higher levels of IL-1β are detected in B6 mice but much 
lower levels are seen in BALB/c “resistant” mice which tend to avoid 
progression to perforation. Inhibition of IL-1β in B6 mice resulted in 
reduction in the severity of disease, decreased presence of PMNs in 
the cornea, decreased pathogen load, and concentration of localMIP-2 
[34]. Macrophages themselves were studied in this murine model by 
cell depletion prior to inoculation with P. aeruginosa. B6 susceptible 
mice and BALB/c resistant mice both had earlier onset and more severe 
disease states whereas B6 corneas perforated at day 3 vs 5-7 days and 
BALB/c perforated at 5-7 days which is unlike their normal resistance 
state [30]. T cells, particularly CD4+ cells, have also been implicated in 
corneal P. aeruginosa infection and have been studied in murine models. 
B6 wild type mice infected with P. aeruginosa underwent perforation 
within 7 days however when these mice are depleted of their CD4+ 
cells (and IFN-γ levels) they failed to progress to perforation unlike 
CD8+ depleted animals which retained their tendency to perforation 
[35]. CD4+ T cells, specifically Th17 cells, have recently been studied 
for their role in the immunopathology of P. aeruginosa infection. With 
the use of galectin-1 (Gal-1) to bind carbohydrates on CD4+ cells, a 
significant diminution in disease severity was observed in the infected 
corneas of B6 mice. There was a marked decreased in the number 
of PMNs, CD4+ and CD45+ cells, as well as a decreased presence of 
Th17+ cells in infected tissue [36]. This work suggests that Th17 cells, 
which secrete IL-17, a proinflammatory cytokine, drive a significant 
portion of the exuberant host response in pseudomonal ulcers and 
treatment aimed at knocking down Th17 cells may provide a future 
therapeutic target.

In the setting of contact lens wear, Langerhans cells (LC) have 
been found to migrate from their residence in the limbal conjunctiva 
into the cornea. When BALB/c resistant mice were infected with P. 
aeruginosa following induction of LC migration (using sterile bead 
application) into the cornea before infection, increased levels of LCs 
and their expression of B7- 1 were detected and the tendency towards 
corneal perforation was increased. Also, when B6 susceptible mice 
were given anti-B7 antibodies, there was a reduction in disease severity 
and fewer CD4+ T cells present [30]. This suggests that LCs have a 

proinflammatory role that can exaggerate the host reaction and be 
ultimately detrimental to the cornea in P. aeruginosa keratitis.

There is evidence that Toll-like receptors (TLR) play a role in the 
immune response in P. aeruginosa keratitis whereas there is increased 
expression of TLRs in susceptible compared with resistant mice [37]. In 
humans TLR5 specifically is detected in corneal epithelium of humans 
and functions to bind bacterial flagellin which then initiates a signaling 
cascade to augment inflammation [30]. TLRs in the mouse have been 
found to be activated by mBD-2 first via its action on dendritic cells 
which then functions as a ligand for TLR4 and stimulation of the 
adaptive immune response [38]. In human corneas CD14 and TLR4 
are expressed and upon interaction with lipopolysaccharide (LPS) 
there is a calcium dependent process that occurs releasing a variety 
of cytokines and chemokines and propagating the immune response 
[39]. It is an area requiring further investigation but has promise for 
unlocking more clues to the pathogenesis of bacterial keratitis.

Current Prevention and Treatment
Proper lens hygiene including using fresh solution each day, 

replacing lens cases, hand washing, avoiding sitting water in the eye and 
wearing well-fitting contacts are all important factors in preventing the 
development of bacterial keratitis associated with contact-lens wear. 
Daily disposable lenses appear more favorable to be recommended to 
patients as they impart the lowest risk of infection [40]. Avoidance of 
any patching of the eye in the setting of contact-lens related corneal 
infection is paramount in preventing progression of disease. Prompt 
initiation of broad antibiotic coverage is critical as corneal infections 
due to P. aeruginosa can progress precipitously. Corticosteroid 
administration should be avoided prior to initiation of antibiotic 
therapy. The use of corticosteroids with concurrent antibiotic therapy 
remains controversial. A large multicenter randomized clinical trial, 
The Steroids for Corneal Ulcers Trial (SCUT) was conducted to 
evaluate the therapeutic role of steroid use in the form of prednisolone 
sodium phosphate 1.0 percent as an adjunct to antibiotic therapy in 
bacterial keratitis and found there was overall no difference in the best 
corrected visual acuity at 3 months however there were also no safety 
concerns associated with its use. However, in patients with counting 
fingers or worse vision and those with central ulcers had a significant 
improvement in visual acuity with steroid administration [41].

Fluoroquinolones offer highly effective corneal penetration and 
coverage for pseudomonas species but for gram positive coverage 
including MRSA often combination therapy with vancomycin 
is warranted. Other options for the treatment of pseudomonal 
keratitis include tobramycin and ceftazidime. Fortified high-
concentration formulations may be considered as well with caveat 
of toxicity to the corneal epithelium as well as cost and availability. 
When adjacent tissues are involved systemic antibiotics may be 
indicated. Once culture results are available revealing bacterial species 
and sensitivities, or if clinical response changes, treatment can be 
narrowed with monotherapy. In the setting of corneal perforation or 
descemetocele, a penetrating keratoplasty may be indicated [2].

Current and Future Investigations
Translating current basic research into a treatment setting is the 

ultimate goal of such studies, and as far as the role of modulating host-
specific factors, it would appear efficacious to hasten bacterial killing, 
and suppress the local exuberant and unregulated immune response. 
This is a lofty goal, given the superb complexity of the innate immune 
response to P. aeruginosa infections in the eye.
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One promising therapy involves suppression of high-
mobility group box 1 (HMGB1) an alarmin, and a member of a 
family of danger associated molecular patterns (DAMPS) that 
amplifies inflammation. In the susceptible B6 murine model, HMGB1 
knockdown with siHMGB1 decreased corneal disease as well as 
diminished levels of IL-1β, MIP-2, TNF-α and increased levels of anti-
inflammatory markers, and decreased numbers of infiltrated PMNs 
[42]. Investigations into this molecule are ongoing and may be a 
promising gateway into protection against bacterial keratitis using 
immunomodulatory chemical mediators or biologic pharmacotherapy 
using antibodies or other small molecules targeted to abrogate the 
effects of HMGB1 coupled with antibiotic therapy.

Another molecule being targeted for potential therapeutic value 
is Resolvin E1 (RvE1) which functions to recruit monocytes and 
macrophages which are non-inflammatory as well as encourage 
removal of PMNs from the site of infection [43]. Using a murine 
model, one group demonstrated that RvE1 treated corneas 
dampened the corneal inflammatory response initiated by LPS, P. 
aeruginosa and Staphylococcus aureus alike. There were decreased levels 
of cytokines, fewer macrophages and PMNs, and blunted formation of 
corneal infiltrates [44]. This suggests a potentially valuable role in the 
treatment of bacterial keratitis likely concomitant with antibiotics.

Given the severity of pseudomonal ulcers and their tendency 
to progress to perforation, it raises the question of the role of 
strengthening the corneal integrity using a technique with excellent 
efficacy in keratoconus. Iseli et al. [45] investigated the use of 
ultraviolet A and riboflavin corneal cross-linking in patients with 
infectious keratitis with evidence of corneal melting. Five patients 
were treated with cross-linking therapy after it was clear their infection 
was refractory to systemic and topical antibiotic therapy. Cessation 
of corneal melting was appreciated in all eyes that underwent cross-
linking and this treatment may play an important role in protecting 
eyes from progression of the disease as well as avoiding more invasive 
procedures such as keratoplasty.

With the risk of severe disease and burden to the patient and 
healthcare system with contact lens related microbial keratitis, 
questions arise regarding the utility of antimicrobial lenses or lens cases. 
The goal would be to prevent or disrupt the biofilm that is accumulated 
on the posterior lens surface. Zhu et al. [46] have been investigating 
lenses coated with fimbrolide as a potential inhibitor of bacterial 
growth, but it is yet to be determined how this may translate to clinical 
practice. Unfortunately, the former does not address the compliance 
related risks of extended contact lens wear including sleeping in lenses 
for multiple sequential nights and improper lens hygiene. All of these 
also carry the risk of selecting for resistant species of organisms, which 
introduces increasingly difficult challenges for treatment.
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