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Abstract

The Pim serine/threonine kinases have been shown to be overexpressed in cancer. Elevated levels of Pim1 
kinase were demonstrated in human leukemia and lymphomas, as well as in solid tumors such as pancreatic, 
prostate and bladder cancers, and have been proposed as a prognostic marker. Although the Pim kinases have 
been identified as oncogenes in transgenic mouse models, they have only weak transforming abilities on their own. 
However, they have been shown to greatly enhance the ability of other genes or chemical carcinogens to induce 
tumors. To explore the role of Pim1 in bladder and ureteral urothelial cancer, we generated a conditional Pim1 
transgenic mouse model and found that prostate specific antigen-(PSA)-driven Cre expression lead to transgene 
expression in the bladder upon (testosterone/estrogen) hormone treatment. We then explored the effect of Pim1 
overexpression on hormone treatment, either alone or in combination with Pten haploinsufficiency. We found that 
Pim1 overexpression increased the severity of bladder and ureteral urothelial hyperplasias in both backgrounds, 
leading to pyelonephritis in transgenic animals. Our data suggest that Pim1 might contribute to progression, rather 
than initiation, and that the hyperplasias also contribute to the development of pyelonephritis.

Keywords: Pim1 kinase; Mouse models; Pyelonephritis; Urothelial
hyperplasia

Introduction
The Pim proteins (Pim1, Pim2 and Pim3) are a family of short-lived 

serine/threonine kinases that are highly conserved in multicellular 
organisms. The different members are highly homologous at the amino 
acid level [1], but differ in their tissue distributions [2]. However, 
functional redundancy between the three Pim kinases has been shown 
in vitro [3,4] and in vivo [5,6].

Pim kinase transcription is rapidly upregulated in response to 
a wide range of growth factors [7-9], including interleukins and 
interferons. The majority of these factors transduce their primary 
signal through the JAK/STAT pathway [5]. Additionally, Pim1 is able 
to negatively regulate the JAK/STAT pathway by binding to SOCS 
proteins [10]. Gene expression of any of the 3 Pim kinases is also 
induced by activation of the NF-κB signaling pathway, hypoxia [11] 
and DNA damage, thereby protecting cells from apoptosis [12]. Pim 
kinases are not regulated by post-translational modifications like other 
kinases but are primarily regulated by transcription, translation, and 
proteosomal degradation [13-16]. 

Although the Pim kinases are only weakly transforming oncogenes, 
they have been shown to greatly enhance the ability of c-myc to induce 
lymphomas and prostate cancer [17-21], perhaps by counteracting 
Myc-induced apoptosis [22].

Pim kinases mediate their physiological activities through the 
phosphorylation of a wide range of cellular substrates, including cell 
cycle regulators such as p21waf1 and p27kip1 [23,24], cdc25A [25] and 
cTAK/MARK3/Par1A; pro-apoptotic proteins such as Bad and ASK1 
[26,27]; and transcriptional regulators such as RuNX1 and RuNX3 
[28], HP1, NFATc1, c-Myb or p100 [29-33]. More recently, Pim2 has 
been shown to phosphorylate the ribosomal protein 4E-BP1, affecting 
protein synthesis [34]. 

Elevated levels of Pim1 kinase were first reported in human 
leukemia and lymphomas [8,35,36]. Recently, Pim1 was found to be 
increased in solid tumors, including pancreatic, prostate and bladder 
cancers [37-40], as well as squamous cell carcinoma, gastric, colorectal 
and liver carcinomas [41,42], and liposarcoma [43]. Increased levels 
of Pim2 kinase have been detected in various lymphomas as well as 
in prostate cancer [44]. Pim3 kinase has been found to be aberrantly 
expressed in malignant lesions of endoderm-derived organs, such as 
the liver and pancreas, and in Ewing’s sarcoma [1]. 

Bladder cancer (BC) is one of the most common malignancies 
in the Western world. Approximately 3 out of 4 bladder tumors are 
diagnosed as non-invasive, with resection being the main therapy. 
However, the recurrence rate is very high (50-70%), and on average 
20% of non-invasive tumors progress to a muscle-invasive disease [45-
47]. Therefore, the challenge for clinicians is the identification of novel 
therapeutic targets for bladder cancer chemotherapy. In this context, 
Pim1 has been shown to be overexpressed in BC epithelium, and the 
expression levels were higher in invasive bladder cancer than in non-
invasive samples. Furthermore, Pim1 knockdown reduced bladder 
cancer cell growth and sensitized cells to chemotherapy in vitro [38]. 

We generated a conditional transgenic Pim1 mouse model that 
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surprisingly was able to show PSA-driven Cre expression under 
hormone treatment in urothelial cells. To further explore the role 
of Pim1 in bladder cancer initiation and progression, we used these 
conditional Pim1 transgenic mice that expressed Pim1 in urothelial 
cells upon hormone treatment, and analyzed the contribution of Pim1 
hyperplasia and possible progression. Accordingly, we explored the 
effect of Pim1 overexpression upon hormone treatment, either alone 
or in combination with Pten haploinsufficiency.

Methods
Construction of the transgenic DNA

Human Pim1 gene was amplified by PCR using cDNA from 
human IMR90 cells as a template, with a Myc-tag being added via 
PCR. Human Pim1 was then cloned into the pVL-1 vector (Figure 
1A). The DNA construct was injected into embryonic stem cells and 
proceed as indicated in [48]. Primers specifically designed for human 
Pim1 kinase, which do not amplify mouse Pim genes, were used for all 
PCR experiments and subsequent genotyping of mice (Figure 1A and 
Supplementary Table 1 for primer sequence and PCR programs). 

Genotyping of mouse lines

Four weeks after birth, 2-3 mm tail sections were cut of each mice, 
placed into 1.5 ml Eppendorf tubes, and stored at -80°C. To lyse the tail 
tissue, 400 µl of lysis buffer [48], and incubated at 55°C over night while 
shaking at 220 rpm. Then, the lysates were incubated at 95-100°C for 
30 min to inactivate the proteinase K, the tubes were centrifuged at full 
speed for 10 sec, and 2 µl of the lysates were used for the genotyping 
PCR (Supplementary Table 1). 

Maintenance of mouse colonies

All animals were kept in the CNIO animal facility according to the 
facility norms based on the Real Decreto 1201/2005 and sacrificed by 
CO2 inhalation either within a programmed procedure or as a humane 
endpoint when animals showed signs of significant sickness. PSA61-
CRE mice were a kind gift from Prof. J Trapman. PTEN KO mice were 
a kind gift of Prof H. Wu.

Analysis of transgene expression at the RNA level and Q-RT-
PCR.

The expression of different transcripts in tissues was analyzed by 
reverse transcription-PCR (RT-PCR). Total RNA was isolated using 
TRI-REAGENT (Molecular Research Center, Cincinnati Ohio), 
treated with DNase (Roche), and reverse transcribed using random 
hexamer primers (Promega) and reverse transcriptase (Promega). The 
cDNA was amplified using specific primer combinations as described 
in Supplementary Table 2. Quantitative measurements were performed 
by purifying total mRNA using TRI-REAGENT (Molecular Research 
Center, Cincinnati Ohio). Reverse transcription was performed with 5 
µg of mRNA using MMLV reverse transcriptase (Promega) and oligo 
dT primers. Real-time PCR was performed using an ABI 7900HT 
(Applied Biosystems) as indicated in [48]. The reaction was carried out 
in 96-well plates and QPCR reactions were run using Taqman Gene 
Expression assays (Applied Biosystems). Detection of GAPDH was 
used as an internal control. Relative quantitation values were expressed 
as Log10 of Relative Quantity. Relative Quantity and statistical analysis 
for QPCR data were calculated using Applied Biosystem RQ Manager 
1.2.1 software.

Carcinogenesis induced by testosterone and estradiol

We used mice with an average age of 8 weeks. The hormones 
testosterone (Sigma) and β-Estradiol (Sigma) were mixed with colorless 
silicone (Soudal) and dried for 48 h. Pellets were stamped out using a 
5 mm biopsy punch (Stieffel), resulting in a 30 mg hormone/silicone 
pellet. A 5 mm incision was made on the lower back (after anesthesia 
with 2% isofluorane), and the pellets were inserted under the fur. The 
procedure was repeated after 8 weeks. The total doses of the implanted 
hormones are as follows: Implanted total 1st dose at 8 weeks of age: 
Testosterone: 12.5 mg; β-Estradiol: 1.25 mg.

Implanted total 2nd dose at 16 weeks of age: Testosterone: 18.75 
mg; β-Estradiol: 1.87 mg.

To ensure the health of the animals, the mice were monitored every 
24-48 h, depending on the health status of each animal. 

Necropsy and pathological analysis

Tissues were fixed in 10% formalin for 24 h, dehydrated at different 
ethanol concentrations with xylol and embedded in paraffin at 65°C. 
Tissue fixation and paraffin embedding were carried out at the 
Histopatology Unit at the CNIO.

Statistical data analysis

To determine the statistical significance of the lesions and 
the statistical significance of the differences in the incidence of 
pyelonephritis, either a one-way ANOVA or a one-tailed Student´s 
t-test were used as indicated in the figure legends.

Immunohistochemistry

Prepared paraffin tissue blocks were cut into 2 μm sections using 
an automated microtome and the sections were dyed with H&E or 
various antibodies. All staining were carried out at the Compared 
Pathology Unit at the CNIO according to established protocols. We 
used the following antibodies: anti-p21 from Santa Cruz (sc-397-G) 
and horseradish peroxidase (goat anti-rabbit) secondary from Dako 
(P0448).

Results
Generation of transgenic mice carrying the PIM1 transgene

We generated mouse lines that conditionally express the Pim1 
transgene by inserting a stop cassette flanked by LoxP sequences. 
These lines were crossed with a transgenic mouse line expressing 
Cre recombinase under the control of the PSA promoter, allowing 
CRE expression primarily in prostate. Upon Cre recombinase 
expression, the stop cassette would be excised allowing Pim1 transgene 
transcription (Figure 1A). We identified two Pim1 transgenic founder 
mice that clearly expressed the Pim1 transgene under PSA-Cre control 
in the prostate (Figure 1B). However, upon hormone treatment 
(estradiol+testosterone), we found that the Pim1 transgene was also 
expressed in bladder tissues (Figures 1B and 1C). 

As Pim1 is regarded a “weak” oncogene, we decided to study the 
induction of bladder hyperplasia solely by Pim1 overexpression, as 
well as the effect of Pim1 overexpression in the absence of one Pten 
allele. To that end, we used conditional knock-out mice bearing a 
floxed Pten allele. Upon Cre recombinase expression, the Pten allele 
will be inactivated by excision of exon 5 of the Pten gene [49] in cells 
in which Pim1 transcription is activated. A summary of the mouse line 
genotypes used in this study are as follows: tgPim1 [Pim1(Tg/+);PSA-
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Figure 1: (A) Scheme of the transgene strategy used. (B) Relative expression of PIM1 in Pim1/PSA-Cre mice after 2 rounds of hormone treatment. RNA was extracted 
from different tissues of 24 weeks old mice after testosterone and estradiol treatment. Reverse transcriptase PCR was performed to obtain cDNA, which was amplified 
using specifically designed primers. PCR fragment length was checked on a 1.5% agarose gel. (C) Levels of transgenic PIM1 mRNA determined by quantitative 
RT-PCR. Graph shows average levels of expression in the bladder of PIM1 mRNA of per genotype performed in triplicate. Data were normalized to the endogenous 
levels of GADPH in each sample. ND: Not detected. Transgenic PIM1 mRNA was not detected in WT or PTEN-Het mice. (D) Urothelial hyperplasia in hormone treated 
mice. To determine the development of urothelial hyperplasia due to hormone treatment, 8-week-old untreated mice of each genotype and hormone treated mice 
of corresponding genotypes, were sacrificed and bladder tissue was taken and distended with fixative (10% formalin). Upper pictures: Representative hyperplasia 
observed in bladder walls. Bottom pictures: Pictures show representative increases in bladder size over treatment course. H&E staining of bladders from tgPim1 mice 
before treatment and after 1 or 2 treatment rounds, respectively. All pictures were taken at the same magnification, (Panoramic viewer – ZeissE) Urothelial hyperplasia 
grades reached. (E) Grading of hyperplasia in the different conditions. Hyperplasia of epithelial cells in bladder, before and after hormone treatment, was graded using 
the following grading scale: bh-grade 0: normal (2-3 cell layers); bh-grade 1: slight hyperplasia (4 cell layers); bh-grade 2: slight/moderate hyperplasia (5-8 cell layers); 
bh-grade 4: moderate hyperplasia (9-10 cell layers); bh-grade 4: moderate/severe hyperplasia (11-12 cell layers); bh-grade 5: severe hyperplasia (>12 cell layers). 
See text for details.
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CRE (Tg/+)], Pten-Het [Pten(loxp/+);PSA-CRE (Tg/+)], tgPim1/Pten-
Het [Pim1(Tg/+); Pten(loxp/+); PSA-CRE (Tg/+)]. 

We measured the levels of Pim1 transgene expression by 

quantitative RT-PCR in bladder tissues from all strains and found 
that the levels of Pim1 transgene expression in the bladder were not as 
high as in prostate (Figure 1B) but were specific to mice expressing Cre 
recombinase (Figure 1C) upon hormone treatment. 

Hormone treatment induces urothelial hyperplasia in 
the bladder of mice overexpressing Pim1 alone or with 
simultaneous loss of one Pten allele.

Hormone treatment protocols, such as those used in this work, 
have not been reported to cause urothelial hyperplasia or severe bladder 
pathology. However, we detected an increase in general bladder size 
(Figure 1D) A large and macroscopically pathological bladder was only 
evident after hormone treatment and correlated with the expression of 
the Pim1 transgene or the loss of one Pten allele. 

To explore the observed bladder hyperplasia, we decided to analyze 

Bladder 
hyperplasia grade 

(bh-grade)
Effect on bladder Cell layers

0 Normal 2-3
1 Slight hyperplasia 4
2 Slight/moderate hyperplasia 5-8
3 Moderate hyperplasia 9-10
4 Moderate/severe hyperplasia 10-12
5 Severe hyperplasia >12

Table 1: Classification of bladder hyperplasia in mice after hormone treatment. 
Bladder hyperplasia grade (bh-grade) was established on bladder tissue that was 
extended with fixative (10% formalin) at necropsy.

Figure 2: Urothelial hyperplasia developed after hormone treatment. Example for (A) average of hyperplasia grade observed in each genotype (B) maximum of 
hyperplasia grade in each genotype. To determine the development of urothelial hyperplasia due to hormone treatment, 8-week-old untreated mice of each genotype 
and hormone treated mice (1 or 2 rounds) of corresponding genotypes were sacrificed and the bladder was taken. H&E staining of bladder tissue was used for grading 
and statistics as shown in Figure 1D.
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the bladder epithelia microscopically (Figure 1E). Hyperplasia of 
epithelial cells in the bladder before and after hormone treatment was 
graded using the grading scale shown on Table 1. After one treatment 
round, wild type mice showed no hyperplasia (bh-grade 0), tgPim1 
mice displayed mostly bh-grade 1 (Figures 1E and 2A) reaching the 
maximum of bh-grade 3 (Figures 1D and 2B), and PTEN-Het mice 
primarily displayed bh-grade 1 (Figures 1D and 2A) with 3 animals 
reaching bh-grade 3 (Figure 2B). The increase in urothelial hyperplasia 

was even more significant in tgPim1/PTEN-Het mice, where several 
animals displayed bh-grade 4 and 1 animal reached bh-grade 5 (Figures 
1D and 2B). 

Hormone treatment induces hyperplasia of the ureter in mice 
overexpressing Pim1 alone or in combination with loss of one 
Pten allele.

Similarly, we analyzed the epithelial layers of the ureter in 

Figure 3: Ureter hyperplasia in hormone treated mice. To determine the development of ureteral hyperplasia due to hormone treatment, 8 week old untreated mice 
of each genotype and hormone treated mice of corresponding genotypes were sacrificed and ureter taken and distended with fixative (10% formalin). (A) Ureteral 
hyperplasia grades reached. Hyperplasia of epithelial cells in the ureter before and after hormone treatment was graded using a similar grading scale to the bladder: 
grade 0: normal (2-3 cell layers); grade 1: slight hyperplasia (4 cell layers); grade 2: slight/moderate hyperplasia (5-8 cell layers); grade 4: moderate hyperplasia (9-
10 cell layers); grade 4: moderate/severe hyperplasia (11-12 cell layers); grade 5: severe hyperplasia (>12 cell layers). See text for details. (B) Example for average 
hyperplasia grade observed in each genotype. To determine the development of ureteral hyperplasia due to hormone treatment, 8-week-old untreated mice of each 
genotype and hormone treated mice (1 or 2 rounds) of corresponding genotypes were sacrificed and ureters were taken.
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transgenic animals subjected to hormone treatments. As in the 
bladder, we observed an increase in ureteral hyperplasia (Figure 3). 
This hyperplasia clearly decreases the light of the ureter, reaching full 
occlusion after one treatment round in some cases in tgPim1/Pten-Het 
mice or after 2 hormone treatment rounds in tgPim1 mice (Figure 3B). 

Pim1 and Pim2 phosphorylate the cell cycle inhibitor p21(Cip1/
WAF1) (p21) on Thr145 in vitro and in vivo [23]. It has been reported 
that the overexpression of Pim kinases in cells leads to the increased 
stability of p21 and results in enhanced levels of endogenous p21 
proteins [50,51]. Knockdown of Pim expression via siRNA results 
in reduced expression of endogenous p21, indicating that Pims are 
legitimate p21 kinases regulating p21 stability. To explore whether 
Pim1 overexpression triggers the stabilization of p21, we quantified the 
number of cells showing p21 nuclear staining for all lesion grades in 
all cohorts. We observed an increased number of umbrella cells with 
p21 in high-grade lesions (Figures 4A and 4B) (tgPim1, Pten-Het and 
tgPim1/Pten-Het genotypes) but not in hyperplastic tissues. We did 
not observe a high number of cells showing nuclear staining for p21 in 
low-grade hyperplasias in any cohort. 

High incidence of pyelonephytis 

When correlating the genotypes with the treatments in which we 
observed increased urothelial hyperplasia (especially in tgPim1/Pten-
Het mice after one treatment round or tgPim1 mice after 2 hormone 
treatment rounds), which lead to ureter occlusion, we observed a high 
incidence of pyelonephritis (Figure 5), with up to 50% of the animals 
with this specific genotype developing this disease. As pyelonephritis is 
quite painful and leads to death within 12-24 hours, the animals were 
sacrificed at the earliest sign of kidney and or urination problems; no 
further rounds of hormone treatment were performed due to the high 
rate of affected animals. 

Due to the significantly increased incidence of pyelonephritis in 
tgPim1/Pten-Het mice during the first round of hormone treatment, 
a second round of treatment was not administered and humane 
euthanasia was performed. However, we were able to administer a 
second round of hormone treatment to the WT and tgPim1 mice. It is 
interesting to note that after one round of treatment, PTEN-het mice 
did not develop pyelonephritis while WT mice did not develop disease 
after 2 rounds. This clearly indicates a role for Pim1 in the secondary 
development of this disease, most likely due to induced bladder and 
ureter hyperplasia in these transgenic mice.

Discussion
The hormone treatment classically used to induce prostatic lesions 

is not known to induce urothelial hyperplasia. Nevertheless, we detected 
moderate to severe urothelial hyperplasia in 30% of tgPIM1/Pten-Het 
and Pten-Het mice and light to moderate urothelial hyperplasia in 30% 
of tgPIM1 mice after one round of hormone treatment. There was no 
observed urothelial hyperplasia in untreated 10-month old mice of any 
genotype.

The PSA/Cre mouse model used in this study has been 
demonstrated to express the induced transgene not only in prostate 
tissue but also in bladder after hormone treatment. We did not detect 
expression of Pim1 in the bladder of untreated 10 week-old mice of 
any genotype, but there was detectable expression Pim1 after 1 or 2 
rounds of hormone treatment in 24-week old tgPIM1 mice. We do not 
know the reasons for this unspecific expression of transgene in bladder 
upon hormone treatment. It is possible that as testosterone activates 
PSA transcription, the levels of testosterone generated by hormone 
treatment might be sufficient to induce PSA promoter transcription in 
bladder, and therefore CRE expression, and might thus activate Pim1 

Figure 4: p21waf1 nuclear stabilization in urothelial lesions. (A) Representative pictures. To examine p21waf1 in urothelial lesions, immunohistochemistry for p21 
was performed in the bladder and ureter tissues of 16-week-old hormone-treated mice showing high grade and low-grade lesions. Picture shows p21waf1 staining in 
bladder and ureter lesions. Arrows show nuclear staining for p21waf1. (B) Average (± SD) percentage of nuclear p21 positive cells per genotype.
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expression. This theory is supported by evidence that PSA is expressed 
in some bladder carcinomas [52-54]. 

The observation that hormone treatment induced urothelial 
hyperplasia suggests that, in a carcinogen-prone environment, Pim1 
alone is able to induce hyperplasia. The same can be said for the loss of 
one Pten allele. Consistent with published data indicating that PTEN 
inactivation has a role in promoting bladder cancer [55], Pten-Het 
mice show a significant increase in urothelial hyperplasia compared to 
wild type mice. TgPIM1/Pten-Het mice show an increased severity of 
hyperplasia in the bladder, confirming the cooperation between Pten 
loss and Pim1 overexpression in hormone-induced hyperplasia. 

In parallel to this work, we generated conditional Pim1 transgenic 
mice expressing Pim1 in prostate epithelium, and analyzed the 
contribution of PIM1 to neoplastic initiation and progression [48]. 
Accordingly, we explored the effect of PIM1 overexpression in the 
same settings as this work, upon hormone treatment, during aging, 
and in combination with the absence of one Pten allele. We have found 
that Pim1 overexpression increased the severity of mouse prostate 
intraepithelial neoplasias moderately in all three settings. Analysis 
of senescence induced in these prostatic lesions suggests that Pim1-
induced hyperplasias do not progress to malignant state due to the 
induction of senescence. 

As in this and other transgenic or KO models [56-60], our model 
showed that increased expression of Pim1, alone or in combination 

with loss of one Pten allele, was not sufficient to produce tumors; 
however, Pim expression clearly contributed to the increased severity 
of hyperplasias in a manner similar to what has been reported in other 
models [61]. But in other models, especially prostate, an increase 
in senescence markers was observed in high-grade hyperplasias 
correlating with observations suggesting that senescence might regulate 
the transition from hyperplasia to carcinoma [55,62,63].

The process of senescence increases the levels of senescence markers 
such as p21waf1, p16ink4a, and p19ARF in the cell nucleus. As none of 
the 16-week-old hormone-treated mice and 10-month-old untreated 
mice displayed bladder tumors, we sought to determine senescence 
levels in the urothelial tissues of mice of each genotype using the markers 
p21, p16, and p19. The quantification of all three markers for all lesion 
grades in all cohorts showed an increased number of cells with p21waf1 
in umbrella cells in high-grade lesions (tgPim1, Pten-Het, and tgPim1/
Pten-Het genotypes). However, we did not observe significant nuclear 
staining for p16 or p19 in any sample, indicating that senescence is not 
the primary response induced by Pim1 overexpression in bladder at 
difference of prostate. Or alternatively, the effectors of this senescence 
process are different. 

Finally, Pim1 overexpression-induced hyperplasia in bladder 
and ureters may lead to light occlusion, inducing pyelonephritis in 
transgenic animals. This severe phyelonephritis effect may be due to a 
combination of hyperplasia in bladder and ureters and the hormone-
induced prostatic inflammation and hyperplasia observed in PIM1 
transgenic mice [48] that could partly obstruct the urinary tract 
causing urinary reflux, thus contributing to pyelonephritis. This is 
also supported by works reporting that hormone treatment can lead to 
bladder outlet obstruction and voiding dysfunction in male mice [64].

The overexpression of PIM1 transgene in prostate leads to an 
impaired immune response in hormone-treated mice which seems 
to be related to pyelonephritis and to the absence of senescence 
markers in prostate neoplasia [48]. However, in ureter and bladder, the 
immunoresponse was not found significantly increased in any of the 
genotypes. 

Summaryzing, our data suggest that Pim1 might contribute to 
progression rather than initiation of urothelial neoplasia and that 
urothelial hyperplasia is an important factor in the development of 
pyelonephritis.
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