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Abstract
Petroleum industries generate wastes, some of which may be considered hazardous because of the presence 

of toxic organics and heavy metals. The wastes can bioaccumulate in food chains where they disrupt biochemical or 
physiological activities of many organisms, thus causing carcinogenesis of some organs, mutagenesis in the genetic 
material, impairment in reproductive capacity. Bioremediation constitutes the primary mechanism for the elimination 
of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, microbial 
community composition and metabolic potential have been explored in petroleum-hydrocarbon contaminated 
wood treatment plant soil. A collection of strains, adapted to grow on minimal medium supplemented with coal tar 
creosote, was obtained and the diversity of the bacterial collection was analysed by 16S rRNA gene-based 454 
pyrosequencing. Sequencing of the bands revealed a high proportion of Proteobacteria represented by the Alpha, 
Beta and Gamma subclasses, suggesting that Proteobacteria and especially Gamma subclass is a dominant group 
in coal tar creosote contaminated soils. The biotechnological potential of the operational taxonomic units (OUTs) 
revealed a significant degradation of creosote PAHs and production of biosurfactant with important emulsification 
activities during the bioremediation process.
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Introduction 
A considerable amount of oily sludge can be generated from the 

petroleum industry during its crude oil exploration, production, 
transportation, storage, and refining processes [1]. In particular, the 
sludge generated during the petroleum refining process has received 
increasing attention in recent years. It contains a high concentration of 
petroleum hydrocarbons (PHCs) and other recalcitrant components. As 
being recognized as a hazardous waste in many countries, the improper 
disposal or insufficient treatment of oily sludge can pose serious threats 
to the environment and human health [2]. Short et al. [3] reported that 
thirteen years after the Exxon Valdez oil spill in Prince William Sound, 
the toxic effects are still being felt due to the remaining bulk of the 
less-weathered subsurface oil. A random sampling of underground 
fuel storage tanks conducted by U.S. Environmental Protection Agency 
(USEPA) in the United States revealed about 35% leaks in these tanks 
[4,5].

Due to a lot of factors, oil pollution has continued to be of 
great concern to the entire world. One of the main issues faced by 
refineries and petrochemical industries is related to the safe disposal 
of this residue, since its destination and/or inappropriate treatment 
can cause serious impact to the environment and potential risk to 
human health [6]. Petroleum hydrocarbons are organic pollutants of 
major concern due to their wide distribution, persistence, complex 
composition, and toxicity. They can bioaccumulate in food chains 
where they disrupt biochemical or physiological activities of many 
organisms, thus causing carcinogenesis of some organs, mutagenesis 
in the genetic material, impairment in reproductive capacity [5]. The 
most common petroleum hydrocarbons include aliphatic, branched, 
and cycloaliphatic alkanes, as well as monocyclic and polycyclic 
aromatic hydrocarbons (PAHs). PAHs include naphthalene, fluorene, 
phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, 
benzo[a]pyrene. Combined cycloaliphatic–aromatic structures can 
also be found in crude oil. Each petroleum fraction is usually composed 
of hundreds of different hydrocarbon molecules rather than a defined 

composition. Thus, fractions are dissimilar in terms of volatility, 
bioavailability, toxicity, degradability, and persistence. This complex 
array of compounds depicts the tremendous challenge for designing 
effective bioremediation strategies, which can be illustrated by the 
effects of major contamination events in the past [7,8].

Various physicochemical methods are available for the treatment of 
petroleum waste, although many of these technologies are costly, energy 
intensive, inefficient and not eco-friendly. Bioremediation technology 
on the other hand, which is based on natural microbial population of 
contaminated sites has been recognized as a sustainable, economic, 
environmentally friendly and versatile alternative clean-up strategy [9]. 
The success of bioremediation technologies applied to hydrocarbon-
polluted environments highly depends on the biodegrading capabilities 
of native microbial populations or exogenous microorganisms used as 
inoculants [10]. The communities which were exposed to hydrocarbons 
become adapted, exhibiting selective enrichment and genetic changes 
[11]. The adapted microbial communities can respond to the presence 
of hydrocarbon pollutants within hours [11] and exhibit higher 
biodegradation rates than communities with no history of hydrocarbon 
contamination [12]. 

The major issue hindering rapid degradation of the petroleum 
sludge in biological method is the poor availability of hydrocarbons to 
the microorganisms due to their complexity and water insoluble nature. 
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Hence, the greatest challenge for microbiologists and bioengineers 
in the area of petroleum sludge bioremediation is developing the 
technology that will ensure the interaction of microorganisms with 
the complex hydrocarbon overcoming the pollutant complexity and 
insolubility [13,14].

Biosurfactants play a pivotal role in the biodegradation of 
hydrophobic aromatic compounds contained in petroleum and 
heavy oil , but the extent to which various petroleum-degrading 
microorganisms produce these substances is still unknown [15]. Since 
long term exposure to petroleum hydrocarbons would be expected 
to select for the development of biosurfactant-producing bacteria via 
horizontal gene transfer and metabolic switching [16], chronically 
contaminated sites should contain bacteria that produce effective 
surfactants that can be used by many different petroleum-degrading 
species that are indigenous to petroleum-dominated habitats [15].

In our previous study of creosote contaminated soil bioremediation 
(Bezza and Chirwa, 2015, in press) microbial consortia was enriched 
from the wood treatment plant soil using Creosote as a source of 
carbon and energy. The soil sample was collected from the top surface 
layer (15 cm) at a wood impregnation plant in the outskirts of Pretoria 
(Gauteng, South Africa). The sampling site is contaminated by a variety 
of industrial waste products related to Creosote processing that have 
been released over the last twenty years. The soil contained about 
21 percent by weight TOC and 1.5% of PAH (such as naphthalene, 
fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]
anthracene, benzo[a]pyrene). The bioremediation technique proved 
efficient in the removal of PAHs in the contaminated soil through 
supplying oxygen and nutrients. An examination of the waste residue 
after 45 days of treatment revealed a 79% PAH removals in the nutrient 
amended bioslurry reactors. PAH percent removals varied from 52.0 
percent for 5 and 6 ring PAHs to 82.0 percent for 2 and 3 ring PAHs 
in nutrient amended samples where the community dynamics was 
studied. The evaluated process was aerobic thus it supported an array of 
aerobic bacteria. The objective of this work was to assess the microbial 
community composition and abundance of Hydrocarbonoclastic and 
biosurfactant producing bacteria from the creosote contaminated 
soil using high-resolution 16S rRNA tag pyrosequencing technique 
as described by Albers et al. [17]. The abundance of different 
Hydrocarbonoclastic bacteria was assessed in the creosote contaminated 
soil samples before the inoculation and after the bioremediation of the 
soil samples.

Materials and Methods
Sample collection 

Creosote degrading microbial cultures were enriched from soil 
obtained from wood treatment plant in Pretoria West (Pretoria, South 
Africa). Due to the creosote contamination at the site, high levels of 
PAHs, PCBs and other petrochemical organic contaminants were 
detected in the soil. Microbial inocula were prepared by shaking 5 g (wet 
weight) of the inoculum source in 100 ml of MSM [18] containing 5% 
(v/v) creosote as a source of carbon and energy. Microbial cultures for 
the pyrolysis analysis were sampled by withdrawing 5 ml liquid culture 
from the shake flask before the enrichment. The enrichment culture 
was grown for 7 days under continuous shaking at 120 rpm in a Labcon 
SPL-MP 15 Orbital Shaker (Labcon Laboratory Services, South Africa). 
Aliquots of enrichment cultures (5 ml) were aseptically transferred to 
fresh 5% (v/v) creosote containing medium and incubation continued. 
This enrichment procedure was repeated for five successive transfers. 

Biosliurrty reactors and sampling procedure

The 2L bioslurry reactors sampled were set up with the contaminated 
soil to give 30 percent soil-water slurry. The reactors were seeded with 
the enriched microbial cultures and sufficient nutrients N and P were 
added to obtain a C:N:P ratio of 100:10:1 [19] to satisfy the demands 
of the microbes degrading the petroleum hydrocarbon contaminants. 
The reactors were vigorously mixed using overhead mechanical 
mixers and run in triplicates at 37°C for 45 days. After the 45 days of 
bioremediation samples were collected for microbial dynamics study. 
The reactors were sampled by withdrawing slurry material from each 
reactor. The samples for the microbial analysis were collected in sterile 
15 ml plastic bottles. During transportation to the laboratory, the 15-ml 
samples were frozen immediately in a cooler with dry ice. The samples 
were stored in the laboratory at 20°C.

DNA extractions 

To extract DNA from samples, frozen sample filters were removed 
from the freezer and immediately crushed into small pieces in the 
tube by using a sterile spatula. The frozen filter pieces were added to 
a tube containing a bead-beating matrix and buffers according to the 
standard protocol for the Fast DNA spin kit for soil (MP Biomedicals, 
Solon, OH). DNA extractions were further carried out according to the 
manufacturers’ instructions. The amount and quality of the extracted 
DNA were estimated on 1% agarose gels and using Nano Drop 
spectrophotometer readings (Thermo Scientific, Wilmington, DE). 
Extracted DNA was stored at -20°C for downstream processing.

PCR amplification and pyrosequencing 

Samples were prepared for 454 pyrosequencing using two-step 
PCR [20]. Initial PCR Mastermix was 1 × Phusion HF buffer (with 
MgCl2; Finnzymes Oy, Espoo, Finland), 0.2 mM of dNTP mixture, 0.5 
U Phusion Hot Start DNA polymerase (Finnzymes), 0.5 μM of each 
primer, 1 μl of template, and sterile Milli-Q water to a final volume of 
25 μl. Primers were MPRK341F (5′CCTAYGGGRBGCASCAG-3′) and 
MPRK806R (5′GGACTACNNGGGTATCTAAT-3′), slightly modified 
from Yu et al. [21]. The primer set targets the 16S rRNA genes flanking 
the V3 and V4 regions with an overall coverage of 85% and 80% for 
bacteria and archaea, respectively. PCR conditions were an initial 
denaturation step of 98°C for 30s, followed by 30 cycles of denaturation 
at 98°C for 5 s, annealing at 5°C for 20 s, elongation at 72°C for 20 s, and 
a final extension step of 72°C for 5 min. Immediately before running 
on 1% agarose gels with ethidium bromide for UV visualization, PCR 
products were incubated at 7°C for 3 min and then transferred to ice. 
The bands of PCR products were cut from the gels and purified using 
Montage DNA Gel Extraction kits (Millipore, Bedford, MA). 

To add adaptor and tags to the PCR products, we performed a 
second round of PCR using DNA fragments from the purified bands as 
templates. The second PCR amplification was performed as described 
above, except that we used the primers MPRK341F and MPRK806R 
with adaptors and 22 barcodes of 10 nucleotides length (on the forward 
primer). Further, the number of cycles for denaturation, annealing, 
and elongation was reduced to 20. The PCR products were processed, 
run on agarose gels, and purified as described above

Amplified fragments with adapters and tags were quantified using 
a Qubit fluorometer (Invitrogen, Life technologies, Carlsbad, CA) 
and mixed in equal concentrations (108 copies/μl) to ensure equal 
representation of each sample. A 454 sequencing run was performed 
on a 70_75 GS Pico Titer Plate using a GS FLX pyrosequencing system 
according to the manufacturer’s instructions (Roche, Mannheim, 
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Acidobacteria (1.6%). Proteobacteria have been identified in many 
studies as the predominant phylum in soil samples [27,28] playing an 
integral role in nutrient cycling [28].The Proteobacteria encompass 
enormous morphological, physiological and metabolic diversity, and 
are of great importance to global carbon, nitrogen and sulphur cycles 
[27]. 

Bacteria in the phyla Proteobacteria,Actinobacteria, Firmicutes, 
Bacteroidetes and Chlamydiae have been reported as hydrocarbon 
degraders [29]. The current study showed that besides the above 
mentioned phyla Verrucomicrobia; Chloroflexi; Planctomycetes; 
WPS-2; Chloroflexi; Armatimonadetes; Gemmatimonadetes; WPS-
2; TM7 bacterial phyla were observed in the creosote contaminated 
soil. Our results are in agreement with most studies showing the 
importance of the Proteobacteria, especially the Gamma division, in 
hydrocarbon-polluted soil microbial communities or natural asphalts 
[27,30]. Shared families in both samples were Enterobacteriaceae; 
Pseudomonadaceae; Xanthomonadaceae; Micrococcaceae; Brucellaceae; 
Bradyrhizobiaceae; Sphingomonadaceae; Bacillaceae; Comamonadaceae; 
Methylobacteriaceae; Oxalobacteraceae and Weeksellaceae. Among 
the 13 bacterial OTUs shared between A and B (Figure 1; Relative 
abundance) Pseudomonadaceae is the dominant family. Strains 
affiliated with the gamma-proteobacteria group are associated with 
members of the genera Pseudomonas, Stenotrophomonas, which have 
been reported as being hydrocarbonoclastic strains [16,31]. The term 
“hydrocarbonoclastic” has been used to describe hydrocarbon utilizing 
microorganisms. This specifically relates to microbes that are capable 
of degrading hydrocarbons, and all of which share some characteristics 
like having a capable and efficient hydrocarbon uptake system, have 
receptor sites for binding hydrocarbons and are capable of producing 
surfactants [32]. 

Most of the shared OTUs belong to the genera Pseudomonas, 
Stenotrophomonas, Ochrobactrum, Achromobacter, Enterococcus, 
Cellulosimicrobium, Lactobacillus, Brevibacillus, Ornithinibacillus, 
Arthrobacter, Paenibacillus (Figure 1; Shared OTUs). Species from 
these genera are reported as efficient biosurfactant producers [33-
38]. The community in sample ENGB was dominated by members 

Germany). Sorting and trimming of sequences>150 bp was done by 
the Pipeline Initial Process (http://rdp.cme.msu.edu) as previously 
described [17,22].

Bioinformatic analyses

Sequence processing was performed in Mothur [23]. In Mothur, 
poor quality sequences were set as sequences with a length less than 550 
bases, contained ambiguous bases and homopolymers greater than 6 
bases or did not have a barcode and a primer sequence. Multiple sequence 
alignments were performed using the program MAFFT, version 6.925 
[24], with the E-INS-i strategy assuming multiple conserved regions 
and long gaps. After subsequent preclustering to an alignment of 
known 16S bacterial sequences, chimeras check with UCHIME [25], 
the sequences were aligned and clustered into operational taxonomic 
units (OTUs) using the furthest neighbour algorithm with 97% 
similarity threshold. Bacterial data were summarized at phylum, class, 
order, family and genus and species levels (Figure 1). These OTUs were 
taxonomically identified by the RDP-II Naïve Bayesian Classifier [26] 
using an 80% confidence threshold.

Results and Discussion
Distribution and abundance of bacterial groups 

Using a similarity threshold of 97% to cluster sequences within 
the same operational taxonomic units (OTUs), a total of 320 OUTs 
were found from creosote contaminated soil before the bioremediation 
was conducted (ENG A) and 53 OUTs were obtained in the sample 
after the bioremediation treatment (ENGB), (Figures 1 and 2a). The 
overall distribution of the main prokaryotic groups (phyla or classes) 
showed a dominance of sequences within, Gammaproteobacteria, 
Alphaproteobacteria, Bacilli, Betaprotobacteria and, Acidobacteria 
(Supplementary Figure 1). At the phylum level, the foremost 
populations in the ENGA were Proteobacreia whereas and ENGB 
reactors included Proteobacreia, Firmicutes, Actinobacteria, 
Acidobacteria at 1% cut off. Proteobacteria was the dominant bacterial 
phylum, representing 99% of the 16S rDNA reads from the 320 most 
abundant bacterial OTUs in sample A at 1% cut off (Supplementary 
Figure 1; Relative abandance). Pseudomonadaceae (94%) was the most 
dominant family from the sample whereas Enterobacteriaceae (0.018%) 
and Xanthomonadaceae (0.0026%) were observed at 1% cut off level 
(Figure 1; Relative abandance). Proteobacteria represented 88.8% of the 
phyla in the ENGB whereas Firmicutes (2.22%), Actinobacteria (1.6%), 

 

Figure 1: The overall distribution of the prokaryotic groups.

 
Figure 2a:Operational taxonomic unitsobtained after bioremediation treatment.

http://rdp.cme.msu.edu
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of the Enterobacteriaceae family (Figure 2a) representative genera 
in this family like Klebsiella and Serratia were reported as efficient 
biosurfactant producers and capable of hydrocarbon degradation 
[39,40]. Pseudomonas spp which are dominant in sample A (Figure 2b) 
are able to endure and metabolize contaminants that are considered 
very toxic to other bacteria. Pseudomonads have a huge potential for 
bioremediation, several studies have proved that Pseudomonas sp. 
can utilize a vast range of contaminants either naturally present or 
xenobiotic [41]. Pseudomonas sp. is a prolific producer of a number 
of biosurfactants and extra cellular enzymes (like lipase). Importantly, 
these organisms are able to form stable surface associated microbial 
communities (biofilms), which have been described as potent alternative 
to planktonic cells regarding their application as biocatalyst, especially 
when solvents or otherwise toxic compounds are involved in the 
processes [42]. The term ‘biofilm’ refers to surface-associated microbial 
communities as well as microbes forming flocks and aggregates. 
Biofilm organisms develop on all kinds of interfaces (e.g., oil/water/air) 
and are embedded in self-produced extracellular polymeric substances 
(EPS) in which they live in a coordinate fashion, thereby benefitting 
from ecological niches formed within the biofilm [43]. Biofilm-
growing organisms are self-regenerating, spatially and metabolically 
well organized, and are in general less affected by toxic substrates and/
or products [43]. Accordingly the Pseudomonas sp. can be considered 
as exceptional biocatalysts and can accelerate bioremediation when 
other species are not fit. (Figure 1) Venn diagram showing unique and 
shared OTUs (97%) in each sample ENGA and ENGB and the total 
richness for all groups by pyrosequencing. Figure Relative abundance 
of the microbial community before the inoculation of the enriched 
consortium (ENGA) and after 40 days of bioremediation of the 
creosote contaminated soil (ENG B). 

Identification of biosurfactant-producing isolates

Biosurfactant-producing microorganisms are ubiquitous, inhabiting 
both water (sea, fresh water, groundwater) and land (soil, sediment, 
sludge) as well as extreme environments (e.g. Oil reservoirs), and 
thriving at a wide range of temperatures, pH values and salinity. They 
can also be isolated from undisturbed environments where they have 
physiological roles not involving the solubilisation of hydrophobic 
pollutants e.g., antimicrobial activity, biofilm formation or processes 
of motility and colonization of surfaces [44]. However, it is among the 
hydrocarbon-degrading microbial communities that the capability to 
produce biosurfactants is most widespread [45]. Microorganisms have 

adopted different strategies to enhance the bioavailability and gain 
access to hydrophobic compounds, such as hydrocarbons, including 
(1) biosurfactant mediated solubilisation, (2) direct access of oil drops 
and (3) biofilm-mediated access [46]. The production of biosurfactants 
and bioemulsifiers is generally involved, although to different degrees, 
in all the above strategies [45]. Biosurfactant structural uniqueness 
resides in the coexistence of a hydrophilic (a sugar or peptide) and a 
hydrophobic (fatty acid chain) domain in the same molecule, which 
allows them to occupy the interface of mixed phase systems (e.g., oil/
water, air/water, oil/solid/water) and consequently to alter the forces 
governing the equilibrium conditions. This is the prerequisite for a 
broad range of surface activities to take place including emulsification, 
dispersion, dissolution, solubilisation, wetting and foaming [45,47].

The current study suggests that the predominant OTUs identified 
are ubiquitous in petroleum hydrocarbon contaminated soil and 
were proved efficient Creosote degrading with efficient biosurfactant 
production capabilities. The present work shows the potential use of 
these microorganisms and the total consortium for the bioremediation 
of crude oil and petroleum polluted environmental media. 
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