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ABSTRACT
This paper addresses the problematic of detecting changes in bitemporal heterogeneous remote sensing image pairs.

In different disciplines, multimodality is the key solution for performance enhancement in a collaborative sensing

context. Particularly, in remote sensing imagery there is still a research gap to fill with the multiplication of sensors,

along with data sharing capabilities, and multitemporal data availability. This study is aiming to explore the

multimodality in a multi-temporal set-up for a better understanding of the collaborative sensor wide information

completion; we propose a pairwise learning approach consisting on a pseudo-Siamese network architecture based on

two partly uncoupled parallel network streams. Each stream represents itself a Convolutional Neural Network (CNN)

that encodes the input patches. The overall Change Detector (CD) model includes a fusion stage that concatenates

the two encodings in a single multimodal feature representation which is then reduced to a lower dimension using

fully connected layers and finally a loss function based on the binary cross entropy is used as a decision layer. The

proposed pseudo-Siamese pairwise learning architecture allows to the CD model to capture the spatial and the

temporal dependencies between multimodal input image pairs. The model processes the two multimodal input

patches at one-time under different spatial resolutions. The evaluation performances on different real multimodal

datasets reflecting a mixture of CD conditions with different spatial resolutions, confirm the effectiveness of the

proposed CD architecture.

Keywords: Change detection; Deep learning, Heterogeneous Remote Sensing; Multi-source images, Multi-sensor

images

INTRODUCTION

In remote sensing imagery, change detection is the process of
computing differences in a geographical area by analyzing it at
different times. Change detection (CD) problems can be divided
into two main types: the monomodal CD problem assumes that
the change area occurred between two/multiple images over time
under the assumption that these images share the same
characteristics i.e. acquired by the same satellite sensor with the
same specifications. The multimodal CD problem assumes that
the bi-temporal images are acquired by different sensors or with
the same sensor but with different specifications. Detecting
changes between heterogeneous images is a non-trivial problem

as it must take into account multiple sources and characteristics
of the acquired data.

This problem is still less explored, although it has recently
generated a growing interest in the remote sensing research
community, due to the fact that it allows us to exploit, without
restriction, the huge amount of heterogeneous data that we can
now obtain from the various existing archives including the
different types of new and existing earth observation satellites.
The technical and practical advantages enable to increase the
system performances, and especially to avoid detecting natural
changes due to environmental variables such as humidity or
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phenological state. This challenging task can be viewed as the
generalization of the classical monomodal CD problem [1]
which is less used asis for solving the same CD problems (e.g
environmental monitoring, deforestation, urban planning, land
or natural disaster/damage monitoring and management, etc.).

Nowadays, few research works have been addressed in the
multimodal CD issue using supervised and unsupervised
machine learning methods or digital image processing
techniques. The existing research attempts, can be divided into
five categories in which we can find parametric models [2], non-
parametric methods [1], algorithms based on operators using
spatial and temporal similarity measures [3-5], projection based
techniques [6-8], and finally machine learning methods [9-11]
that will be described in more details since the proposed model
belongs to this family.

In parametric methods, a set (or mixture) of multivariate or
meta-Gaussian distributions are generally used to model
common dependencies between the two imaging modalities,
different types of multi-sensor data [2,12-14].

In the category of non-parametric methods, we can mention the
energy based model in the least-squares sense that meet new
criteria, and designed for satisfying an over determined set of
constraints expressed on every pair of pixels existing in the
before and after image change as proposed by Touati and
Mignotte [1].

Thirdly, methods mainly using invariant similarity measures
(such as correlation, mutual information, etc.) by imaging
modality in order to estimate at first, the correspondence
between the same existing points in the two images and then to
identify and detect, in a second time, the zones of change
between the two heterogeneous images.

In the fourth category, the projection or simulation techniques
try to transform the two heterogeneous images into a new
common feature space, in which the two multimodal images
share the same statistical properties, and on which classical
monomodal CD models can then be applied.

Finally, in the category of machine learning methods, the
authors Merkle et al. [15] used an unsupervised learning
algorithm called generative adversarial network consisting of two
networks; the first whose first network generates a binary map
and the second one tries to discriminate between the output of
the generator and the output of a binarization algorithm. Liu et
al. [9], the authors proposed to train a couple of convolutional
neural networks in order to transform the before and after
change images in a feature space allowing to calculate a
difference map, and then to apply a thresholding algorithm on
the resulting map to generate the final binary detection map.
Similar to Liu et al. [9], Zhao et al. [11] proposed to build a
symmetric neural network consisting of a restricted Boltzmann
machine, whose parameters are then updated based on the
clustering result. Another method based on a denoising auto-
encoder network uses selected features of the difference image to
train the network [10].

In the recent proposed approaches, deep learning has become a
methodology of choice as the most advanced form of machine

learning for image classification, object detection, segmentation
and other applications. In particular, convolutional neural
network (CNN) is a descriptor learning frame work with a deep
architecture that transforms the input data through many layers
to extract high level representations from the inputs. Invariant
feature representation learning is types of descriptor learning
framework, which can be built on CNN using for instance
Siamese network [16]. The Siamese CNN architecture is used for
patch comparison and refers to two coupled network streams
with the same CNN architecture and the same parameters
applied to a pair of input data at the same time. In this point of
view, the multimodal CD problem can be considered as a binary
classification task in which the Siamese-CNN architecture takes
as input the two heterogeneous images.

In this work, we are concerned with a heterogeneity problem.
We propose a CD model principally designed to deal with
different imaging sources under different spatial resolutions and
which is well adapted for representing and detecting temporal
changes between two heterogeneous remote sensing images. The
CD model learns directly a binary classification function from
various types of patch pairs coming from different sources,
which are processed through two CNN streams that share the
same architecture configuration but with partly uncoupled
weights between them, in order to extract descriptors
independently for each multimodal input patch. The final stage
of the proposed model consists to combine the two output
descriptors from each stream in a single multimodal
representation, which is then used to learn the binary
classification cost function. The built model classifies the new
temporal input images by processing the input patch pairs in
parallel using the learned convolutional streams and the
decision network for binary classification.

The rest of this paper is organized as follows: section II describes
the designed CD model and its architecture to identify change
or non-change input pairs as similar/dissimilar classes. Section
III presents the evaluation strategy used to assess the
performance of our CD model and the obtained results
compared to the state-of-the-art multimodal techniques. Finally,
section IV concludes the paper.

The two/multiple remote sensing input images that correspond
to the same geographic area are acquired and co-registered at
different time by two/multiple different sensors. Dealing with
the characteristics of the different sources of image represents
the main challenging issue.

One interesting solution is to design a multimodal CD model
with two branches that take as input a pair of images instead of
one input, in which the image before and after are fed to two
branches allowing us to capture both the spatial and the
temporal inter-dependencies. Formally, the task of multimodal
change detection can be viewed as a pairwise identification
problem, where a pair of non-change/non-change images
(samples) are called similar pair, and a pair of non-change/
change represent dissimilar pair which represents the difference
(in the land use) caused by the event and not by differences in
the data sources.
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In this case, the pairwise learning approach is more appropriate
to verify whether a pair of temporal images corresponds to the
similar pair or to the dissimilar pair, i.e. corresponds to the non-
change class and to the change class respectively. This can be
achieved by training a network based on the similarity of the
images in order to learn the similarity between pair of images.
Among metric learning approaches, Siamese network has
already been successfully used in several applications [16-18]
such as change detection, geo-localization, signature verification,
one-shot image recognition, face verification, learning image
descriptors, and image ranking to name a few. The Siamese
architecture consists of two identical subsystems sharing the
same set of parameters and a cost function module to quantify
the pairwise relationship. The cost function can be defined via a
distance metric or a similarity measure. The goal consists to
increase the similarity score or to decrease the distance between
similar pairs, and dually, to reduce the similarity score or to
increase the distance between two dissimilar image patches.

In our case, Siamese network architecture is able to support as
input a pair of images. Since the image pair is multimodal, i.e.,
composed of two different imaging modalities (acquired from
different sources), the Siamese network architecture is less
effective when the weights are shared between the parallel
network streams (parallel subsystems) [19]. Ultimately, using a
cost function based on a distance metric or a similarity measure
to distinguish between similar and dissimilar pair images is less
suitable for evaluating similar pair images coming from two
different sources due to the fact that there was not a strong
enough correlation between heterogeneous similar pair images.

Inspired by the Siamese network, we propose and adapt a
pseudo Siamese network model that handles multimodal pair of
images with multiple heterogeneous sensors and image
resolutions.

Pseudo-Siamese are a variant architecture closely linked to the
basic Siamese architecture [16]. It is well adapted to our
multimodal CD problem since it is a less restricted network in
terms of weights which are not shared between the two network
branches. This leads to increase the number of parameters to be
adjusted during the training phase, giving a more flexible
network than the Siamese network proposed Zagoruyko and
Komodakis [16]. Let us also add that recently pseudo-Siamese
network has been successfully used in different computer vision
tasks such as multimodal patch matching and identification
applications in remote sensing imagery, between SAR and
optical satellite images [19], or for finding the correspondences
between image patches from two highly different modalities,
visible and near-infrared patches in natural scene images [20].

The training of the pseudo-Siamese network is accomplished
using a pairwise learning approach that involves a loss function
depending on pairs of input examples. We formalized the pair-
wise learning task as a classification of temporal multimodal
image pairs into two categories change/non-change. More
precisely, our pseudo-Siamese network based CD model
performs both a supervised multimodal dimensionality
reduction and a binary classification tasks.

Our multimodal CD model architecture is mainly based on
pseudo-Siamese network architecture, having two branches that
share exactly the same configuration architecture, but with fewer
restrictions on the set of weights. Each branch acts as a feature
extractor that takes as input one of the two multimodal patches,
which can be also a multichannel patches with respect to the
number of bands in the input patches. Let us note that the
architecture of our proposed CD model is similar to the network
proposed by Hughes et al. [19] that uses a pseudo-Siamese
network with uncoupled weights between the two CNN
branches in order to identify corresponding patch in SAR and
optical images. In this architecture the first and second CNN
streams receive respectively one SAR and one optical image
modality. Generally, in the heterogeneous CD case, the before
and after images can be acquired with two different (multiple)
modalities, and possibly one of the two CNN branches can
receive a mixed modality with different distributions, i.e. optical
and SAR or inversely SAR and optical images, etc. Theses
multiple pair modalities can be fed to the network streams, and
the model learns more generic features. Instead to learn features
from unshared convolutional layers, and in order to reinforce
the learning ability of our CD model to learn more robust
modality specific features, we propose a partly pseudo-Siamese
connected network which ensures that the weights between the
layers of the two CNN branches are both shared and unshared
depending on the abstraction level (depth). In our architecture,
the weights of the first (two) convolutional layers are unshared
between the two streams, and the layers has the objective to
capture generic features of multimodal patches, i.e. to transform
the local patch into more high-level features for each modality.
Whereas, the rest of the convolutional layer is coupled
(connected) and share the same set of weights. The coupled layer
try to learn to generate the latent multimodal correlation
features of the corresponding feature patch pairs for the binary
classification problem, instead to use features only from the last
unshared convolution layer.

Our overall CD framework includes a decision network as a top
network that forms a descriptor within a lower dimensional
space in which features are combined, hence the loss function
learns a decision function from the compact feature space.

The input to the CD model is considered to be a pair of image
patches, from which descriptors are first computed
independently using two parallel streams and then concatenated
with a top network module that decide if the two multimodal
input patches present a similar or dissimilar pairs.

In more details, our CNN architecture network is composed of a
set of convolutional, ReLU, max-pooling, and fully connected
layers. It takes patches as input and apply on them three
convolutions and max-pooling, ReLU operations and one
concatenation operation of the last layer that is followed by a
fully connected layer. Our proposed CNN architecture is
inspired by the MatchNet network architecture [21], but with a
few layers. The main difference comes from the layer settings.
This means that our architecture favors sparse-dense features
and disadvantages sparse-sparse features produced by the ReLU.
Note also that performing a mean-pooling operation instead of
max-polling, does not significantly increase the performance of
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the CD model. The structure of the CNN architecture uses
small  filters  of 5 × 5 for all convolutional  layers that effectively
increases the model performance and reduces the number of
filter parameters to be learned. A ReLU function is used after
the three convolutional layers, which helps to generate sparse
features. The last fully connected layer acts as a linear dimension
reduction layer, and project convolutional features in lower
dimensions. The ReLU function is removed after this layer to
favorize dense representation from activated neurons. The
output of the fully connected layer is the feature representation
of the input patch. The spatial padding of the convolutional
layer input is 2 pixels for the three convolutional layers with 5 ×
5 filter size. The convolution stride is set to 1 pixel. Three max-
pooling are performed using 3 × 3 spatial pooling kernel with a
stride of 2.

In the fusing stage, the two output descriptors of each CNN
stream are concatenated using a fusion layer that merges the two
input features in one single 128-dimensional feature
representation, which is then reduced using 2 fully connected
(FC) layers but without ReLU function. The first FC layer
contains 16 features and the second has 2 outputs
corresponding to the change/non-change binary mapping.

In the proposed approach, the CD model takes a single input
which is a pair of patches stacked along the depth dimension

that requires being splitted to feed each patch into the
corresponding CNN stream. This is ensured using a slice layer
that splits the single input into two patches which are in fact the
original patches.

As mentioned earlier, the input of the CD model is considered
to be a pair of patches, and by definition the Siamese networks
use a contrastive loss to learn a new metric to assess the
similarity score between these pairs. In the proposed pseudo-
Siamese architecture, we adopted the binary cross entropy as a
loss function. Figure 1 shows the overall pseudo-Siamese-based
change detection framework. Table 1 summarizes the details of
our CNN architecture settings.

Figure 1: Network architecture of the pseudo-Siamese based change
detector model.

Table 1: Details of the model architecture for CNN.

Name Type Input size Filter number
Filter Size
conv

Filter Size
pool Stride Pad Stride ReLU

Conv1/Pool1 conv/max pool 32 x 32 32 5 × 5 3 × 3 1 2 2 Yes

Conv2/Pool2 conv/max pool 32 × 16 × 16 32 1 2 2 Yes

Conv3/Pool3 conv/max pool 32 × 8 × 8 64 1 2 2 Yes

FC1 fully-conn 64 × 4 × 4 64 N/A N/A N/A N/A N/A No

RESULTS

In order to validate and to show the strength of the proposed
model, we conduct the experimentations on five realistic
multimodal datasets, reflecting different imaging modalities
cases under different change detection conditions with different
spatial resolutions, including multi-sensor (heterogeneous
optical images) and multi-source (optical and SAR images),
showing construction and destruction of buildings in different
area. For each multimodal dataset, the ground-truth is provided
by a photo-interpreter as a change mask.

In our application, the classification performance of the
proposed CD model is assessed using the leave-one-out test
procedure. In this well-known evaluation strategy, one entire
multimodal dataset is removed from the whole training
multimodal images, whereas the training phase is performed on
the remaining heterogeneous datasets (Figure 2). The built CD
model is then evaluated on the removed dataset to generate
binary maps. This process is repeated five times and at each time

two multimodal images were retained to form the validation
subset.

Heterogeneous dataset description

The first multimodal dataset is a pair of SAR/optical satellite
images (Toulouse, France), with a size of 4404 × 2604 pixels,
before and after construction. The SAR image was taken by the
TerraSAR-X satellite (Feb. 2009) and the optical image by the
Pleiades (High-Resolution Optical Imaging Constellation of
CNES, Centre National d’Etudes Spatiales) satellite (July 2013).
The TSX image was co-registered and re-sampled by Prendes [23]
with a pixel resolution of 2 meters to match the optical image.

The second dataset shows two heterogeneous optical images
acquired in Toulouse (France) area by different sensor
specifications (size 2000 × 2000 pixels with a resolution of 0.5
meter). The before image is acquired by the Pleiades sensor in
May 2012 before the beginning of the construction work, and
the after image is acquired by WorldView2 satellite from the red,
green and blue spectral bands (11 July 2013) after the
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construction of a building. The WorldView2 VHR-image was co-
registered to match the Pleiades image.

Figure 2: Heterogeneous dataset: (a-c) image t1, t2, ground truth; (d-e) final (changed/unchanged) binary classification and confusion map (white:
TN, red: TP, blue: FP, Cyan: FN) obtained by the proposed approach.

The third multimodal data set consists of one SAR image and
one RGB optical image. It shows a piece of the Dongying City in
China, before and after a new building construction. The SAR
image is acquired by RADARSAT-2 (June 2008) with a spatial
resolution of 8 meters. The optical image comes from Google
Earth image (Sept. 2012) with a spatial resolution of 4 meters.
After co-registration, they are of the same pixel-resolution to give
a size of 921 × 593 pixels.

The fourth dataset shows two heterogeneous optical images
from another area in the south campus of Hubei province of

China, were respectively acquired by the Quick Bird satellite in
May 2002 and the IKONOS satellite in July 2009, with a size of
240 × 240 pixels. The images after preprocessing have the same
spatial resolution of 3.28 meters.

The fifth dataset shows two heterogeneous optical images
covering the campus of Wuhan University in Hubei province of
China. They were respectively acquired by the QuickBird
satellite in April 2005 and the IKONOS satellite in July 2009,
and correspond to 4-bands (red, green, blue, and NIR band)
with a size of 400 × 400 pixels. The resolution of these images is
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of 2.44 and 3.28 meters. After re-sampling the after image have
the same spatial resolution as the before image 2.44 meters.

Table 2: Accuracy rate of change detection on the five heterogeneous datasets obtained by the proposed method and the State-of-the-art multimodal
change detectors (first upper part of each table) and monomodal change detectors (second lower Part of each table).

SAR/Optical Dataset [#1] Accuracy Optical/Optical Dataset [#2] Accuracy SAR/Optical Dataset [#3] Accuracy

Proposed method 0.870 Proposed method 0.865 Proposed method 0.987

Prendes et al. [22] 0.844 Prendes et al. [22], [23] 0.844 Liu et al. [9] 0.976

Correlation [22] 0.670 Correlation [22], [23] 0.679 PCC [9] 0.821

Mutual Inf. [22] 0.580 Mutual Inf. [22], [23] 0.759  

 

Pixel Dif. [23] 0.708

Pixel Ratio [23] 0.661

Quickbird/IKONOS Dataset [#4] Accuracy

 

Quickbird/IkONOS Dataset [#5] Accuracy

Proposed method 0.877 Proposed method 0.837

Tang et al. [24] 0.986 Tang et al. [24] 0.959

Multiscale [24] 0.991 Multiscale [24] 0.966

Table 3: Confusion matrix for each of the five multimodal datasets i.e.,
[TSX/PLEIADES] (4404×2604 PIXELS), [PLEIADES/
WORLDVIEW-2] (2000×2000 PIXELS), [RADARSAT-2/
QUICKBIRD] (921×593 PIXELS), [QB02 /IKONOS] (240×240
PIXELS), [QB02 /IKONOS] (400×400 PIXELS).

Multimodal image pairs TP TN FP FP FN

TSX/Pleiades 50% 90% 10% 10% 50%

Pleiades/WorldView-2 47% 94% 6% 6% 53%

RADARSAT-2/Quickbird 81% 99% 1% 1% 19%

Quickbird/IKONOS 52% 94% 6% 6% 48%

QuickBird /IKONOS 49% 90% 10% 10% 51%

Training details

In this work, we first convert the multi-bands color image to a
grayscale image, and for each multimodal dataset we apply a pre-
processing step to extract patches of size 32 × 32 pixels in order
to form the training samples. In our application, we also expand
the training samples in order to improve the generalization
ability of our CD model. For each image patch, we perform
standard data augmentation techniques three times by applying
some affine transformations between the same multimodal
patches. This is simply achieved by performing rotation,
translation, and scale image processing techniques. The CD
model was trained using the scaled conjugate gradient descent
algorithm, with a fixed learning rate of 0.001 and without
dropout layer. The momentum and the weight decay were set to

0.9 and 0.004 respectively. The number of epochs was set to 150
epochs. The Training was conducted on GPU clusters with
batches of 64 pairs of 32 × 32 patches using balanced classes
with leave-one-out evaluation strategy, i.e. the training take
around five rounds. Each time a completely different datasets is
used for evaluation.

Evaluation results

The evaluation of our CD model is assessed using the accuracy
classification rate, which quantifies the percentage of the correct
changed and unchanged pixels (Equation 1), in order to
compare the obtained results to the state-of-the-art methods:��� = ��+ ����+ ��+ ��+ ��  (1)

Where TP and TN represent the number of pixels that are
correctly classified, FN and FP represent the number of
misclassified pixels. In our application, the global accuracy rate
represents the average accuracy rate obtained from the five
different change detection accuracy rates obtained from the five
heterogeneous datasets with the leave-one-out evaluation
scenario.

In the first experiment, we compare the performance of our CD
model with unsupervised image processing CD models. To that
end, we summarize respectively in Tables 2 and 3 the accuracy
rate and the confusion matrix obtained using the leave-one-out
evaluation strategy. As depicted in Tables 2 and 3 the proposed
CD model outperforms some of the state-of-the-art methods, it
is able to process new probe image pairs under different change
detection conditions and without over fitting any of the two
classes.
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In a second experiment, we compared the performance of our
CD model with the supervised pseudo-Siamese, Siamese, and
the unsupervised Siamese network models described by Hughes
et al. [19] and Rahman et al. [25]. Let us recall that the
architecture of our CD model was adapted from the pseudo-
Siamese network model of Hughes, et al. [19], where the main
difference come from the number of parameters and degree of
freedom to map the two modalities onto the new subspace.
More precisely, our CD model has fewer parameters and degree
of freedom to be tuned during the training phase, i.e
architecture with partly unshared-shared weights between the
two parallel CNN streams, in which our model uses features
from the last shared convolution layer to train the binary
decision network, contrary to the network architecture proposed
by Hughes et al. [19] Which is unshared parallel network
streams, uses features solely from unshared convolution layer to
learn the decision network? Let us also add that the supervised
and unsupervised Siamese network models [25] are both a fully
shared parallel network streams which uses selected features
from multiple levels, but with different network decision. Let us
also recall that the network CD models were validated under the
leave-one-out evaluation strategy in our application. The global
average classification rate was 86.8% with the pseudo-Siamese
network model of Hughes LH, et al. [19], and 85.6% and 81.7%
when we experienced the supervised and unsupervised Siamese
network CD models of Rahman et al. [25], for detecting similar
and dissimilar heterogeneous remote sensing image patch pairs
(change vs. non-change) reflecting different multimodal satellite
image sensors and different spatial image resolutions. Based on
this comparison, we can draw some observations about the
behavior of our CD model, in contrast to the pseudo-Siamese
network model [19], and the supervised and unsupervised
Siamese networks [25]. First, we can observe that the proposed
supervised CD model produces higher average classification rate
of 88.7% compared to the obtained rates with the pseudo-
Siamese model [19] and the supervised and unsupervised
Siamese networks [25]. Second, in all the experiments, we have
observed that the CD results obtained by the unsupervised
Siamese network [25] depend on the selection of the decision
threshold, which varies according to the heterogeneous image
pair (CD condition request) to be classified.

Table 4: Average change detection accuracy on the five heterogeneous
datasets obtained by the proposed method and the State-of-the-art
Siamese cd network models.

CD network model Average accuracy

Proposed method 0.887

Supervised pseudo-Siamese [19] 0.868

Supervised Siamese [25] 0.856

Unsupervised Siamese [25] 0.817

Table 4 shows the average classification rate obtained with the
pseudo-Siamese network model [19], supervised and

unsupervised Siamese network models [25], under the leave-one-
out validation strategy.

DISCUSSION

The multimodal CD described in this paper turns out to be
interesting for multi-resolution change detection. Indeed, the
CD model is learning the modality specific features. Globally,
the model learn to fuse features of the two multimodal patches
which helps to factorize the differences (e.g. land cover changes)
and the imaging modalities, but also makes use of standard max-
pooling layers to deal with the multi-resolution nature of the
data. The model can be also less accurate than some specific CD
models that are more specific and only dedicated to a restricted
number of imaging modalities.

CONCLUSION

In this paper, we presented a parallel framework based on partly
uncoupled learning architecture for change detection from bi-
temporal multimodal remote sensing images. The model that
combines a pseudo-Siamese CNN feature descriptor, a fusion
layer and a cost classification module, is able to properly capture
the spatial and the temporal dependencies between the
multimodal input image pairs thanks to its ability to process
input data pairs in parallel. The experiments using the leave-one-
out test strategy demonstrate that the proposed CD model
presents an effective way to process new-unseen heterogeneous
input image pairs with different spatial resolutions and under
different heterogeneous CD conditions such as multi-source and
multi-sensor image pairs.
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