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Introduction
In the linear theory of motion of elastic plates and shallow shells, 

the strain of the middle surface can be neglected when the deflections 
are assumed to be small compared with the thickness of the surface.  
However, in most practical cases, this basic assumption is no longer 
valid; instead the deflections have the magnitude of the thickness of 
the surface. Hence the derivation of governing differential equations 
exhibiting large deflections needs special attention in such analyses.

The importance of the inclusion of nonlinear effects in problems 
relating to the strength and stability of modern flight structures has 
been made initially by von Kármán [1]. Indeed, the von Karman theory 
is widely used to account for the influence of large deflection in plates 
and shells. In fact, more than half a century ago it was Herrmann [2] 
who first proposed the nonlinear plate theory of motion corresponding 
to the dynamic analogue of the von Kármán theory. 

It is well-known that the nonlinear dynamic behavior of thin 
shallow shell structures is of much technical importance to designers 
due to its wide range of applications in many fields of engineering. 
Containers, tanks, domes etc. are common examples of practical 
importance of such structures. However, the papers on nonlinear 
vibrations of shallow shell structures to date are limited in number.

The problems of nonlinear vibration of shallow shells have 
attracted the attention of relatively few investigators in the past [3-6].  
Due to the very complicated nature of the basic equations governing 
the motion of a structure exhibiting large deflection, it has always been 
a difficult task for investigators to obtain even an approximate solution. 
Mazumdar in 1970 proposed a new approach which appeared to be 
quite suitable for bending analysis of elastic plates of arbitrary shapes 
based on the concept of iso-deflection contour lines on the bent surface 
of the plate [7]. This simple but efficient method is best known as 
Constant Deflection Contour Method or CDC-Method.  Subsequently, 
the same method has been extended to the vibration analysis of plates 
and shallow shells [8,9].

The CDC method has so far been restricted to linear analysis until 
an attempt has been made recently to extend it to nonlinear analysis 
of plates [10,11]. In the present paper a similar approach as in [11] is 
undertaken for extension of the study to shallow shell analysis. This 
paper is therefore regarded as a sequel to earlier papers and deals with 
the nonlinear vibration of shallow shells based on the CDC Method.  
Some specific examples on nonlinear vibrations of shallow shells have 
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Abstract
A method for the analysis of nonlinear vibration of shallow shells of arbitrary shape is presented. The method is 

based upon the concept of constant deflection contours on the surface of the shallow shell. The constant deflection 
contour method has previously been found to be a simple tool for the study of linear vibration analysis of shallow 
shells of arbitrary shape. A new approach has been made here to utilize this concept to study the large amplitude 
vibration of shallow shells in conjunction with the Galerkin method.  A number of illustrative examples are included to 
demonstrate the accuracy of the proposed method.

been included to show the efficacy of the method, and that the results 
are in excellent agreement with known results in the literature.

Derivation of Basic Equations
Consider an elastic, isotropic shallow shell of uniform thickness h 

subject to a continuously distributed normal load q. Let the equation 
of the middle surface of the shell referred to a system of orthogonal 
coordinates xyz, be given by [9].

2 2

2 2x xy y

x xy yz
R R R

= + + (2.1)

Where 2 2r x y= + is small compared to the least of the radii of 
curvature Rx, Ry, Rxy and (supposed to be constants).

If the shell is assumed to be comparatively thin and the displacements 
(u, v, w) are predominantly flexural, the strain components can be 
written as

2
2

2

1 ( )
2

x y
x

x

u w w wz
x R x x E

σ νσ
ε

−∂ ∂ ∂
= + + − =
∂ ∂ ∂

, 2
2

2

1 ( )
2

y x
y

y

v w w wz
y R y y E

σ νσ
ε

−∂ ∂ ∂
= + + − =
∂ ∂ ∂

( )
22 2(1 )2xy xy

xy

v u w w w wz
x y x y R x y E

νε σ∂ ∂ ∂ ∂ ∂ +
= + + + − =
∂ ∂ ∂ ∂ ∂ ∂                           (2.2)

With usual notations, the total strain energy is given by
1 ( )
2 x x y y xy xyU dzdxdyσ ε σ ε σ ε= + +∫∫∫ , (2.3)

Whereas the kinetic energy is

( )2 2 2( / 2)eT h u v w dxdyρ= + +∫∫   

, (2.4)

And the work done is

kW pw dxdy=∫∫ (2.5)
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Formulating the Lagrangian with the help of the above expressions 
and applying Hamilton’s principle, a straightforward application of the 
variational calculus yield the following equations of motion [3]

4 , ,,
( , ) 2 ,yy xyxx

tt
x y xy

F FF
D w hS F w h q hw

R R R
ρ

 
∇ = − + − + −  

 
                  (2.6)

and
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Where the operator S (w, F) stands for 
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Here ‘F’ denotes the Airy-Stress function, defined by
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Whereas
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And the (,) notation signifies partial derivative with respect to the 
suffix.

A New Approach   
Mazumdar in [7] put forward a simple method, the so-called CDC-

Method to solve the static and dynamic problems of elastic plates of 
arbitrary shapes. Mazumdar et al [8,9,12-14] applied this method 
for solving various problems of elastic plates and shells of arbitrary 
shapes, restricted to linear cases only. Following Mazumdar [7], a 
new idea has been put forward by Banerjee [10] to study the dynamic 
response of structures of arbitrary shapes based on the CDC method. 
While Mazumdar utilized the concept of Deflection Contour method 
to deduce the basic dynamical equations using elementary theory of 
plates and shells [15-17], the authors in [11] found it easy to arrive 
at the final equations by straightforward utilization of von Kármán 
field equations and then utilizing the required transformations to 
u-variables. In most practical cases, it is found that von Kármán field 
equations in conjunction with the CDC-Method make it easy to apply 
for nonlinear analyses of plates and shells. 

Theory and Derivation of Governing Equations  
When the plate or the shallow shell vibrates in a normal mode, 

then at any instant θt , the intersections between the deflected surface 
and the parallels z=constant yield contours which after projection onto 
the base plane z=0 are a set of level curves, u(x,y)=constant, called 
the “Lines of Equal Deflections” [9], which are, in fact, iso-amplitude 
contour lines .  The boundary of the plate or the shell irrespective of any 
combination of support is also a simple curve belonging to the family of 
lines of equal deflections. 

As defined by Mazumdar [7]   this family of nonintersecting curves 
may be denoted by uC , where *0 uu ≤≤ , so that 0C (u=0) is the 
boundary and *

uC coincides with the point(s) at which the maximum 
u=u* is attained.

Let u=u(x,y)=constant be a member of the family of iso-deflection 
or iso-amplitude contour lines. 

Using the following transformations. 
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Equations (2.6) and (2.7) can be written as
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Since Eqns. (4.2) and (4.3) are valid for all points on the surface of 
the shell, we can have
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The integration is over the region bounded by any contour uC . 
While performing the above integrals it would be more convenient to 
utilize the formula in the modified form

2

1 2 32
* 1

, , ,....., , ,... ( ) ( , )
un

x xx n
u

dw d w d w dsu u u d u x y du
du du du λΩ

    Ψ Ω = − Ψ Ψ  
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∫∫ ∫ ∫      (4.7)

Which is a generalization of the formula adopted in Ref.[9]. Often 
it has been encountered that in the contour integral appearing in Eqn. 
(4.7), the integrand turns out to be dependent on u, and hence care 
should be taken to evaluate first the contour integral. Sometimes, it 
is useful to use the following relations for evaluation of the contour 
integral

2 2
1 2
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p p u u

λ = + = = =                                              (4.8)
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Evaluation of the above integrals will yield two ordinary differential 
equations. Thus, in accordance with the present method, the basic 
fourth order partial differential equations reduce to ordinary differential 
equations which make it rather easy for further study.

Method of Solution
It should be noted here that the above analysis is valid for any 

shallow shell structure. It has been already stated that equations (4.5) 
and (4.6) will yield two ordinary differential equations. For nonlinear 
analysis one may have to seek an approximate solution for which the 
form of the deflected function w must be first assumed compatible 
with the boundary conditions (Figure 1).  Mathematically, this may be 
explained in the following way. Let  u(x,y)=u denote a typical member  
of the family of the iso-deflection curves, then for any prescribed 
boundary conditions the deflection function w(u,t) can be assumed to 
take the form

w=A W (u) f (t)                                                                             (5.1)

Where f(t) is an unknown function of time to be determined. Using 
this expression for the deflection function in the resultant equation of 
(4.6), we get the stress function in the form

{ }, ( )F u f t=Φ                                                                          (5.2)

With this expression for the stress function and previously assumed 
form of W, the resultant equation of (4.5) will yield, after using the 
Galerkin procedure, an ordinary time differential equation.  Let us 
suppose that Eqn. (4.5) in combination with (5.1) and (5.2), yields the 
error function in the form

2
1 1 12, .. ( ), ( ) ( )u f t f t f tε λ λ = Λ  

                             (5.3)

Because of the approximate nature of equation (5.1), the associated 
error function may be minimized using Galerkin method. The 
appropriate orthogonally condition applied to Eqn. (4.5) will yield the 
following “Time Differential Equation” with known constants in the 
form.

2 3
1 2 3( ) ( ) ( ) ( ) *F t F t F t f t qα α α+ + + =                    (5.4)

The solution of which can be obtained and from which the 
subsequent analysis can be performed.

 Eqn. (5.4) can be studied for the following cases:

(a) Free linear vibration of Plates (when x yR and R → infinity) and 
shell (as the case may be)

(b) Free nonlinear vibration of plates and shells

(c) Static analysis of plates and shells.

Specific Illustration
Large vibration of a shallow dome upon an elliptical base

Consider the vibration of a shallow dome of nonzero Gaussian 
curvature upon an elliptic base.  Figure 2 depicts the geometry of the 
shell. The edges are clamped and immovable.  When the shell vibrates 
in a normal mode, the lines of equal deflections, as described in Sec.3, 
may reasonably be taken as

2 2

2 2( , ) 1 x yu x y
a b

= − −                                                                            (6.1)

Clearly, in this case u= 0 on the boundary and u=u*=1 at the center 
of the shell.

The corresponding values of   are given by
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Substituting the above values in Equations (4.5) and (4.6), and 
utilizing the formula given by (4.7) one gets
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Where
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κ
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Figure 1: Iso-deflection curves.

Figure 2: Shallow dome placed on an elliptical base.
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It appears that the exact solutions of Eqns. (6.3) and (6.4) are not 
possible to find. So in order to obtain approximate solutions, let us 
assume 

2( , ) ( ) ( ) ( )= ≈w u t W u f t Au f t                                                         (6.6)

Where f (t) is an unknown function of time to be determined. 

Substitution of (6.6) in (6.4) the first integral of (6.4) yields 
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Which further integration reduces to
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Considering the case for a clamped immovable edge condition we 
set the following conditions:

0

0
u

dF
du =
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2
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u

d F dFu
du du

ν
=

 
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                   (6.9)

Which make both A1 and A2 to be zero and Eqn. (6.8) reduces to

( ) 2 2 4 311 ( ) ( )
3 3

dFu h f t u h f t u
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                                        (6.10)

Substituting Equations (6.10) and (6.6) into Equations (6.3) 
and applying Galerkin procedure one gets after some mathematical 
operations
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An indirect verification of the correctness of the time differential 
equation may be made by considering the case for a flat plate problem. 
When 0, 0,β δ→ →  it implies 

2 0α =  and further if a=b the problem 
reduces to that of a circular plate for which Eqn. (6.11) takes the form 
(for )3.0=ν
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Figure 3: Comparison of result with that of Yamaki [16].
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Figure 4: Load-deflection curve for a spherical shell of radius a, 0.3ν =  
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Which is excellent agreement considering the fact that only a single 
term approximation for the deflection function has been made for the 
present study (Figures 3-6).

Free linear vibration

Set, 2 3, *and Qα α  each equals to zero, when the linear frequency 
is given by

2 40 2
3L

DP
h

ω βδ
ρ

 = +  
   or  

22
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Where 1 / Pγ κ=  and 12 *
h
γ

γ=  represents the measure of 
shallowness of the shell. 

Eq. (6.13), on simplification and with a little rearrangement of the 
parameters, becomes
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Where 
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fundamental mode of vibration) has been introduced for comparison 
[9, 15].

If 0ω  be the value of Lω  corresponding to M=0 and 0ν = , that 
is the value of the frequency for a flat plate with vanishing Poisson’s 
ratio, then
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and
1/24

2 2
0 0

1 1
(1 ) (1 )

L Mω
ω ν λ ν

    = +   − +     
                                              (6.16)

Which are in exact agreement with that of [9].

If the second term in the expression for Lω  dominates the first 
then

1/2

2
2

2
L

E
P

ω κ
ρ

 
=  
 

, 

Which is exactly the same as that [9]. It may be noted here that 
following Reissner the first term is predominant when *γ  or H/h < 
or=25 and the second term is predominant when H/h≥25 in order 
that the theory of shallow shells is applicable. Table 1 shows a close 
agreement for the values of fundamental frequency for a flat circular 
plate.

Nonlinear free vibration

Substituting Q*=0 in Equation (6.11) one obtains
2 2 3

1 2 3 0h f f f fρ α α α+ + =                                                        (6.17a)

Or
2 3

1 2 3 0f A f A f A f+ + =                                                              (6.17b)

This is a familiar form of time differential equation and for which 
the frequency ratio (Nonlinear to Linear) is given by [16]

1/22 2
3 2

1 1

* 3 51
4 6

A A A
A A h

ω
ω

       = + −          

                                                      (6.19)

From which one can find the nonlinear effect on the frequency. The 
results have been presented in the form of graphs (Figures 7-9).

Static deflection

Neglecting the inertial term, Equation (6.11) can be written as

2 3
1 2 3

5
3

f f f qα α α+ =                                                                          (6.20)

Which after simplification reduces to (here f stands for maximum 
static deflection).

24
2 31 1

4 2 2

2 22 20 1600.3
3(1 ) 3 7

qa L f f f
Eh h N h N

γ γ
ν

       = + + +    −       
      (6.21)
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Figure 6: Load-Deflection curves for a/b=1,  a/b=1.5,  a/b=3 with *γ =5.

ν Ref. 15 Present Study Re. 16

0 2.948 2.948 ____
0.3 3.091 3.125 3.125

Table 1: Values of coefficient of 
ρ
E

a
h

2  is in the expression for the fundamental 
frequency for a circular plate.
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Figure 7: ( * / )ω ω vs. relative amplitude (A/h) for a spherical shell. 
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Figure 8: ( * / )ω ω  vs. relative amplitude (A/h) for a/b=1.5, v.
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Figure 9: ( * / )ω ω  vs. relative amplitude (A/h) for a/b=5, v=0.3.

Where   
4 2 2 2

3 2 3 , 3 2 3a a a bL N
b b b a

             = + + = + +          
             

                      (6.22)

Since in the literature, no result on the static large deflection of the 

dome on an elliptic base is available, we may verify the results with 
that for a flat circular plate in the limiting case (Tables 2 and 3). When

0, a bκ → = , equation (6.19) represents the static behaviour of a flat 
circular plate of radius “a” with clamped immovable edges. Equation 
(6.21) shows a comparative study for the same.

( )

3

4
3

4
3

5.8608 2.857 ( )
5.861 2.761
5.848 2.754 (. )

m m

m m

m m

w w present study
qa w w Yamaki
Eh

w w Timoshenko

 +
 

= + 
 + 

   (6.23)

Where mw  stands for 

 
max

/ ( )m mw w h f t= =      [Ref. 16]                                                      (6.24)

= (maximum deflection divided by the plate thickness)

The graphical representation of the above results has been made in 
Figure 3 validating the correctness of the present method.  

Results and Discussion
Frequency analysis

Table 1 shows the values of linear frequency for a circular plates 

obtained using different approaches. It justifies the present approach 
(CDC method). Further discussion on the linear frequency is 
considered to be irrelevant as Equations (6.13-6.16) are exactly the 
same as those obtained in [9,15] and the authors have already made 
detailed discussion on it.

Static analysis

The results for a shallow shell resting on an elliptical base have 
been shown in Figures 3-6. Figure 3 gives comparison of results for 
maximum deflection for a circular plate obtained through a classical 
approach and through the CDC-method. Figure 4 shows the load-
deflection behavior for a spherical shell for different values of ν and 

* (2 / )hγ γ= . It shows that there is no significant difference for the 
load-deflection curve for a spherical shell for * (2 / )hγ γ=  < 5. But the 
measure of shallowness affects the results when * (2 / )hγ γ=  ≥ 5 and 
greater is the measure, lower is the deflection. Figure 4 shows the effect 
of on the load-deflection curve of the shell for a fixed ratio of the aspect 
ratio of the elliptic base. In this case it is observed that greater is the 
measure of shallowness lower is the deflection.  Figure 4 shows that for 
a particular load, deflection increases with the increase of shallowness 
of the shell.

A comparison of results shown in  Figures 5 and 6 indicate that for 
a certain  load the deflection increases with the increase of  or with the 
increase in the aspect ratio (a/b).  

0ν = .0 3ν = .0 5ν =

*γ *( / )ω ω *( / )ω ω *( / )ω ω

0 1.077697 1.070936 1.058808
0.5 1.054078 1.048371 1.038602
1 1.495356 1.452167 1.374265

1.5 2.13267 2.04855 1.892266
2 2.817702 2.696798 2.469124

2.5 3.512205 3.357009 3.062966
3 4.207663 4.019331 3.661462

3.5 4.902489 4.681548 4.261079
5 6.983613 6.665906 6.06027
10 13.91613 13.27773 12.05965
20 27.79355 26.51485 24.07448

Table 2: Values of *( / )ω ω for a/b=1for different values of ν  and *γ .

1 1 1
0.996857 0.996912 0.997036
0.987368 0.987589 0.988091
0.971348 0.971853 0.973
0.948465 0.949384 0.951471
0.918206 0.919689 0.923053
0.879812 0.882039 0.887084
0.832155 0.835358 0.842598
0.773527 0.778023 0.788154
0.70118 0.707448 0.721502
0.610256 0.619123 0.638831
a/b=1.5 1.5 1.5

g=5 5 5
v=0 0.3 0.5

Table 3: Values of *( / )ω ω for a/b=1.5 and *γ =5 for different values of ν .
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Vibration analysis  

Figures 7-14 show the dependence of  nonlinear  to linear frequency 

ratio on *γ and aspect ratio a/b. Figures 7 and 10 show the result for 
a spherical shell ( *γ =0).  It has been observed that the dependence 
on the Poisson’s ratio is not so much significant though the nonlinear 
effect is comparatively a little lower for higher values of ν . Figure 13 
makes a comparative study of dependence of the relative frequency 
ratio *γ  on the aspect ratio (a/b) of the axes of the elliptic base of the 
dome. The nonlinear effect is significant when value of a/b decreases. 
Figure 13 confirms that the nonlinear effect is not so much dependent 
on aspect ratio for *γ ≥1.5-2. Considering all aspects as relevant from 
the Figures 7-14, it appears that the values of *γ in the range of 1-2 
affect the nonlinear behaviour of the vibrating shell.

Conclusion
In conclusion it can be said that the method proposed in this paper 

offers a new approach to deal with problems involving large amplitude 
vibrations of plates and shallow shells. The application of polynomial 
expressions for the deflection and the stress functions in conjunction 
with the Galerkin procedure appears to produce highly accurate results. 
The comparison of results shows that using a moderately approximated 
expression for the deflection function yields results which are 
comparable to the previously obtained results using other approximate 
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Figure 10: ( * / )ω ω  vs. measure of shallowness for a spherical shell for 
various amplitudes.
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Figure 11: ( * / )ω ω vs. measure of shallowness for aspect ratio 1.5 and  
for various amplitudes.
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Figure 12: ( * / )ω ω  vs. measure of shallowness for various amplitudes 
for aspect ratio a/b=5.
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Figure 13: ( * / )ω ω  vs. measure of shallowness for various aspect 
ratios for relative amplitude A/h=1.
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Figure 14: ( * / )ω ω  vs. relative amplitude A/h for various values of  
measure of shallowness  and for aspect ratio a/b=3.
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methods. It can therefore be concluded that the CDC method appears 
to be a simple tool to deal with the problems of nonlinear vibration of 
plates and shallow shells of arbitrary shapes.
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