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Abstract

A new and novel bismuth nitrate and indium bromide-catalyzed glycosylation of aromatic amines with glycal
epoxides is described in moderate yield. Despite the poor nucleophilicity of the aromatic amines, the success of this
reaction is noteworthy.
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Introduction
Acid-catalyzed glycosylation of alcohols and thiols is an attractive

field of research. The nucleophilicity of alcohols and thiols is high
enough to react with an anomeric center of a sugar system that has an
alkene, hydroxy or halogen group [1-12]. It is necessary to activate the
reactants by acidic catalysts. However, glycosylation of aromatic
amines with the above mentioned sugar derivatives are extremely
difficult. Aromatic amines are much less nucleophilic compared to
alcohols and thiols. In this communication, a simple bismuth nitrate
and indium bromide-catalyzed reactions of 1,2-anhydrosugars and
diverse aromatic amines is described [13-39]. The success, although
not excellent, deserve special attention as synthesis of these types of
molecules is not known. Moreover, the method for aromatic
glycosylation is not investigated.

Results and Discussion
Glycosylation of β-lactam alcohols and other alcohols were studied

by our group [1-12]. This was performed with iodine-catalyzed and
indium metal-catalyzed reactions of alcohols and glycal or bromo
sugar derivatives. The success of this reaction was excellent. In parallel
studies, bismuth nitrate and indium bromide were also investigated as
catalysts for the glycosylation reaction of aromatic amines. Aromatic
primary amines are widely distributed in nature. Perhaps, aromatic
primary amines are the most widely studied functional groups in

chemistry. However, carbohydrates bound to aromatic amine through
its anomeric center and the nitrogen of the amine is difficult to obtain.
To overcome the shortcomings, the reaction of aromatic amines with
sugar epoxide was chosen.

At the beginning of this approach protected sugar epoxide 2 was 
prepared from glycal 1 by DMDO-catalyzed oxidation reaction 
(Scheme 1). The epoxide 2 on reaction with different aromatic primary 
amines in the presence of bismuth nitrate and indium bromide 
afforded the sugar-linked NH-aryl systems 3 (α-isomer) and 4 (β-
isomer) in moderate yield. The ratios of the β-isomers were much 
higher than the ratios of the α-isomers irrespective of the nature of the 
solvents and catalysts used in these reactions (Scheme 2 and Table 1). 
In general, it was found that glycal epoxide was consumed within 2-6 h.

Scheme 1: DMDO mediated oxidation of Glycals. Synthesis of 1,2-
Anhydrosugar (Glycal epoxide).

Entry Epoxide Catalyst Solvent(s) Amine(x) (x=N) Yield (%) isolated Ratio (a:b) 3 and 4 Time (hrs)

1 1a R1=Bn Bi(NO3)3.5H2O THF Aniline 30 3a+4a(1:9) 4

p-Anisidine 60 3b+4b(1:9) 3

p-Toludine 55 3c+4c(1:9) 3

9-AP 35 3d+4d(2:8) 5

6-AC 30 3e+4e(3:7) 6
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1a R1=Bn InBr3 CH2Cl2 Aniline 60 3a+4a(1:9) 3

p-Anisidine 70 3a+4a(1:9) 2

p-Toludine 65 3a+4a(1:9) 2

9-AP 45 3a+4a(2:8) 4

6-AC 40 3a+4a(3:7) 5

2 1b R1=Me Bi(NO3)3.5H2O THF Aniline 45 5a+6a(1:9) 3

p-Anisidine 65 5b+6b(1:9) 2

p-Toludine 50 5c+6c(1:9) 2

9-AP 40 5d+6d(2:8) 4

6-AC 30 5e+6e(3:7) 5

1b R1=Me InBr3 CH2Cl2 Aniline 50 5a+6a(1:9) 3

p-Anisidine 60 5b+6b(1:9) 2

p-Toludine 55 5c+6c(1:9) 2

9-AP 35 5d+6d(2:8) 4

6-AC 50 5e+6e(3:7) 5

Table 1: Reaction condition and products ratios of the nucleophilic ring opening of glucal epoxide. 9-AP (9-Aminophenantherene); 6-AC (6-
Aminochrysene).

The reaction proceeded with monocyclic to tetracyclic primary
aromatic amines. Polyaromatic compounds, like 9-
aminophenanthrene and 6-aminochrysene are extremely weak
nucleophiles and sterically hindered. It was very interesting to note
that these polyaromatic primary amines reacted with sugar epoxide in
the presence of bismuth nitrate and indium bromide. To our
knowledge carbohydrates directly linked to the amino group of
aromatic compounds is not known. In our earlier studies, polyaromatic
amino compounds were used as anticancer agents [40-43]. However,
structurally the compound described herein is totally different than
our previous compounds.

Scheme 2: Stereo selective ring opening of glucal epoxide with N
nucleophile. A facile high stereo selective synthesis of N glycoside.

The formation of β-isomer is explained by the nucleophilic attack of
the aromatic amino group from the opposite face of the sugar epoxide.
This type of attack is favored because of the steric hindrance imposed
by the aromatic ring. Since cleavage of an epoxide ring is possible from
both sides of this functional group, formation of minor amounts of α-
isomer is also observed.

Conclusion
A method of aromatic amino glycosylation reaction with sugar

epoxide in the presence of bismuth nitrate and indium bromide is
achieved in moderate yield. This reaction is totally unknown and
therefore, there is an enormous possibility to study this reaction. For
example, identification of other catalysts, temperature, protective
group in sugars and alteration of the nucleophilicity of the aromatic
amines can be undertaken. Nevertheless, the present study opens up a
new method for the preparation of several unknown molecules. On the
basis of the biological activities of related molecules, we expect to
publish the full paper in this field in the future.
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