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Introduction
Tissue engineering

In recent years, tissue engineering has emerged as a potential 
method for treating numerous diseases and regenerating damaged 
cells. By applying engineering approaches to knowledge of biological 
systems, a tissue engineered substitute can be generated to restore, 
replace, or maintain partial if not entire organ function [1]. The key to 
tissue engineering strategies is coordinating cell behavior with specific 
growth factors and biomaterials in order to regenerate functional 
tissues, however this is difficult to experimentally control. 

Towards this effort of fully directing cell behavior, various 
biomaterials as well as different cell types and signaling molecules 
have been investigated. Recent studies have examined the ability of 
mechanical signals to influence stem cell lineage commitment since cells 
in the body reside in different tissue niches with variable mechanical 
properties that effect cellular function. From this information, 
biomaterials have been designed to harness tissue-specific mechanical 
properties to guide stem cells to the targeted cell type. Specifically, 
nanoscale platforms are utilized since they offer a unique ability to 
mimic the physical cues that cells receive from their microenvironment. 
Researchers have developed materials with tunable matrix elasticities, 
nanotopographies, and nanoscale patterns that have the ability to 
manipulate cell phenotype. This review explores current developments 
in the use of nanotechnology to drive cell function determination. The 
following section briefly describes common cell types used in tissue 
engineering applications, then discusses the interactions between cells 
and different biomaterials with nanoscale features. 

Cell sources
Major sources of cells for tissue engineering include adult stem 

cells, progenitor cells, embryonic stem cells (hESCs), and induced 
pluripotent stem cells (iPSCs). Adult stem cells, or mesenchymal 
stem cells (hMSCs), are multipotent and generally derived from 
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Abstract
Tissue engineering utilizes cells, signaling molecules, and scaffolds towards creating functional tissue to repair 

damaged organs. Pluripotent stem cells (PSCs) are a promising cell source due to their ability to self-renewal 
indefinitely and their potential to differentiate into almost any cell type. Great strides have been taken to parse the 
physiological mechanisms by which PSCs respond to their microenvironment and commit to a specific lineage. The 
combination of physical cues and chemical factors is thought to have the most profound influence on stem cell behavior, 
therefore a major focus of tissue engineering strategies is scaffold design to incorporate these signals. One overlooked 
component of the in vivo microenvironment researchers attempt to recapitulate with three dimensional (3D) substrates 
is the nanoarchitecture formed by the fibrillar network of extracellular matrix (ECM) proteins. These nanoscale features 
have the ability to impact cell adhesion, migration, proliferation, and lineage commitment. Significant advances have 
been made in deciphering how these nanoscale cues interact with stem cells to determine phenotype, but much is 
still unknown as to how the interplay between physical and chemical signals regulate in vitro and in vivo cellular 
fate. This review dives deeper to investigate nanoscale platforms for engineering tissue, as well use the use of these 
nanotechnologies to drive pluripotent stem cell lineage determination.

adipose tissue (AD-hMSCs) or the bone marrow (BM-hMSCs). When 
exposed to the correct chemical signals, AD-hMSCs can differentiate 
towards osteogenic, chondrogenic, adipogenic, myogenic, and hepatic 
lineages, as well as become endothelial cells [2-5]. Bone marrow-
derived hMSCs are a type of adult stem cell that can differentiate to 
bone, cartilage, muscle, ligament, tendon, adipose, and stroma lineages 
[6-9]. Mesenchymal stem cells are useful in numerous applications, 
however are subject to senescence and cannot indefinitely proliferate 
[10]. Furthermore, when hMSCs are removed from their native stem 
cell microenvironment, they lose differentiation potential at a rapid 
pace [11]. 

Progenitor cells are lineage-committed and maintain the tissue in 
which they reside [10]. These progenitor cells have been discovered 
in muscle tissue [12], cartilage [13], bone [13,14], tissue in the central 
nervous system [15], in the bulge of the hair follicle [16], as well as 
many other locations. Like hMSCs, progenitor cells have a finite limit to 
proliferation and follow Hayflick’s limit of 50-70 population doublings 
[10,17]. Both hMSCs and progenitor cells have the advantage of patient 
specific treatment, however their narrow differentiation capabilities 
and limited proliferation potential present severe drawbacks. 

Advantages of pluripotent stem cells
hESCs and iPSCs overcome limitations of hMSCs and progenitor 

cells by offering the ability to self-renew indefinitely as well as 
differentiate into any cell type of the body [18]. Embryonic stem cells 
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are derived from the inner cell mass of a blastocyst during the pre-
implantation stage [19-21]. hESCs are typically grown in colonies and 
maintained in feeder-dependent or feeder-free conditions to keep 
cells in an undifferentiated state. In traditional two-dimensional (2D) 
cell culture, hESC colonies are grown on a feeder layer of mitotically 
inactivated mouse embryonic fibroblasts. To avoid using cell types 
outside of hESCs for differentiation studies, 2D well plates can be coated 
with matrigel to allow for hESC attachment without the feeder layer, 
on which cells are able to double 130 times before losing pluripotency 
[22]. This is crucial in conducting successful differentiation studies. 
Undifferentiated colonies can be transformed into embryoid bodies 
(EBs) that are useful in differentiation experiments since they mimic the 
natural developmental morphology during gastrulation and the in vivo 
germ layer establishment [23]. While the three-dimensionality of EBs 
is ideal, a drawback of this culture method is the inability to generate a 
large number of cells. The disparity between in vivo and in vitro tissue 
development from hESCs can be overcome by engineering a three-
dimensional (3D) microenvironment from which the undifferentiated 
cells can receive cues and thus differentiate towards specific lineages. 

iPSCs were first created by introducing four pluripotency 
transcription factors (Oct3/4, Sox2. C-Myc, and Klf4) to a mouse 
fibroblast cell, after which the fibroblast exhibited properties of 
undifferentiated hESCs [24]. These stem cells have the ability to 
differentiate into cells of all three germ layers, can self-renew, 
and proliferate indefinitely [25,26]. Unlike hESCs, iPSCs offer the 
opportunity for patient specific treatment since somatic cells can be 
taken from the target host, reprogrammed through the addition of 
transcription factors, cultured to increase cell number, differentiated 
towards the desired lineage, and finally implanted back into the patient. 
Since the genetic material in the implanted cells is the same as in the 
host’s cells, the risk of immunorejection is low.

One barrier for using hESCs and iPSCs in regenerative medicine is 
that teratoma formation in implanted tissue can occur when cells have 
not fully and uniformly differentiated into the target tissue [27,28]. 
Therefore, it is extremely important to develop a direct approach to 
exclusively generating desired cells and avoiding spontaneous teratoma 
formation.

Microenvironmental Influence on Pluripotent Stem 
Cell Phenotype

Although hESCs and iPSCs are promising cell sources for tissue 
engineering applications and invaluable tools for studying developmental 
biology, there are still many fundamental aspects of PSC biology that 
are unknown. Specifically, researchers are striving to understand and 
deconstruct the mechanisms by which the microenvironment effects 
lineage determination, as well as cell phenotype and function. 

The native microenvironment is composed of the extracellular 
matrix (ECM), which is a network of proteins that provides physical 
and chemical cues determining cell behavior [29-32]. Cell biologists 
have analyzed numerous cytokines and soluble factors responsible 
for stem cell regulation, however, recent studies indicate that these 
soluble factors work in conjunction with the insoluble components 
present in the ECM such as adhesive, mechanical, and topographical 
cues [33-37]. Specifically, insoluble factors are made up of collagens, 
non-collagenous glycoproteins (laminin, elastin, fibronectin), and 
hydrophilic proteoglycans [38]. Stem cells can detect and respond 
to signals simultaneously presented in the microenvironment; cell 
mechanotransduction machinery converts these soluble and insoluble 

cues to signal upregulation of various genes and subsequent lineage 
commitment [37]. 

Past biomaterial design has focused on microscale technologies 
to drive stem cell lineage commitment, but the in vivo tissue structure 
provides cues to cells at a nanoscale. Furthermore, cells tend to respond 
to microscale fiber scaffolds the same way that they do when cultured 
on a 2D polystyrene cell culture plate. Cell morphology becomes flat, 
which causes a lopsided attachment of focal adhesions [38]. Therefore, 
providing signals at the microscale level might be physiologically 
inconsistent for directing stem cell differentiation [39], and there is a 
need to engineer functional nanoscale microenvironments for tissue 
engineering applications. The field of nanotechnology in relation to 
tissue engineering involves designing novel materials with at least one 
dimension between 1-100 nm to use as scaffolds for influencing cell 
behavior [40]. The following section will discuss different techniques 
for creating biomaterials with nanoarchitectural features (Figure 1).

Nanoscale platforms
The in vivo microenvironment is composed of channels, pores, 

and ridges that provide physical cues to cells at a nano level [39]. 
Knowledge of how these factors influence stem cell behavior is 
necessary to effectively design scaffolds that differentiate stem cells 
to the desired lineage. To analyze the impact of nanofeatures on 
cell behavior, engineers and scientists have combined principles of 
chemistry, physics, material science, and biology to create specialized 
substrates. Fabrication techniques such as soft lithography, deposition 
of nanostructures, microfluidics, and electrospinning all create ways for 
researchers to manipulate topography [41-43]. These platforms have 
been used to determine specific cues that regulate stem cell function. 
In this section, current nanotechnology and material approaches are 
introduced, and applications of these platforms will be addressed later 
on in the review.

Electrospinning
This technique can form a network of polymer fibers down to 

the size of 10 nm [44]. To generate electrospun scaffolds, a voltage is 

Figure 1: Tissue engineering coordinates the interplay of cells, biomaterials, 
and signals to create the desired functional tissue. This review investigates 
pluripotent stem cells and how nanotechnology-incorporated scaffolds can 
provide physical cues to direct cellular fate.
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applied to a polymer solution, the charged solution is ejected though 
a needle, and electric forces stretch the polymer jet so that fibers with 
submicroscale diameters form on the grounded collector surface [45]. 
Since the fiber diameters are much smaller than cellular surface area, 
this platform allows cells to organize around the fibers [46] and attach 
with a spread morphology with numerous focal adhesions [47]. Another 
advantage of this technique is the ability to create electrospun scaffolds 
from synthetic as well as natural polymers [45]. However, one challenge 
with this fabrication method is that cells cannot migrate throughout 
the scaffold due to pore sizes being smaller than that of a cell [38]. 
Recent progress has overcome this limitation by using self-assembly of 
nanofibers around the cells [48]. Knowledge of protein self-assembly 
and optimization of noncovalent intermolecular interactions produced 
this revolutionary approach to forming the nanofibrillar architecture 
around cells without damaging them [49,50]. This technique allows the 
scientist to spatially and mechanically organize cells, which is critical 
to tissue engineering strategies since cells in the body are arranged in 
specific patterns that form tissues and organs [38]. This fabrication 
process is able to create substrates that mimic grooves, ridges, and the 
fibrillar ECM structure, and recent advancements with assembling the 
scaffold material around target cells has overcome the previous inability 
of cells to infiltrate the scaffold. 

Soft lithography
The general method of soft lithography uses elastomeric stamps to 

print nanoscale polymers on a surface [51-54]. Patterned polymers can 
range from 30 nm to several microns [55]. This is a useful technique 
because the engineer has full control over spatial distribution of polymer 
molecules placed on the substrate, which subsequently determines cell 
spreading and shape [56-58]. Soft lithography is an invaluable tool 
because it creates a platform on which researchers can isolate and 
control mechanical cues exposed to single cells [59] and also pairs or 
triplets of cells [60]. This technique is very useful in deciphering cellular 
reactions to individual physical cues since the polymers can be easily 
manipulated to express specific mechanical characteristics. However, 
a limitation with this platform is that soft lithography is only able to 
provide a narrow range of ECM signals for the cell to receive, which is 
inconsistent with the many microenvironmental cues provided to cells 
in vivo. 

Hydrogels
Hydrogels are a popular tissue engineering scaffold with proven 

success in medicine and biological research due to their tunable tissue-
like properties [61-65]. The goal of hydrogel design is to mimic natural 
ECM, which is accomplished by crosslinking polymers. The intricate 
linking of these hydrophilic molecules forms a network with tissue-like 
viscoelastic mechanical properties, as well as similar interstitial flow to 
the in vivo microenvironment. Similar diffusive transport also occurs 
in hydrogel cell culture platforms, and hydrogels can be designed to 
incorporate cell adhesion ligands and other biologically relevant 
components [38]. Although hydrogels are an extremely moldable 
substrate and offer numerous advantages as scaffolds for tissue 
engineering, they have low mechanical strength, they are difficult to 
sterilize, and loading drugs and cells in the matrix before crosslinking 
the material is difficult [66,67]. Further optimization studies are 
warranted to overcome these barriers.

Carbon nanotubes

Carbon nanotubes (CNTs) possess ideal qualities for tissue 
regeneration strategies such as tunable chemical and mechanical 
properties, electrical conductivity, cytocompatibility, and nanoscale 

dimensions that serve as topographical cues [68]. Furthermore, 
CNTs have numerous applications for directing cell behavior such as 
drug delivery, gene modifications, and incorporation in the in vitro 
3D cell microenvironment to add roughness [69-71]. When placed 
in fetal bovine serum (FBS), proteins readily adsorb to the surface of 
CNTs subsequently promoting cell attachment [72]. Several studies 
have demonstrated the potential of CNTs for bone tissue engineering 
applications [73-76], myoblastic cell attachment and growth [72] as 
well as neuronal cell proliferation [77], but little is known regarding 
the effect of CNTs on stem cell fate. In order to hypothesize how CNTs 
could influence pluripotent stem cell behavior, an analysis of studies 
conducted on the effect of CNTs on other cell types must be done, with 
further scrutiny on how individual characteristics of CNTs control the 
cellular response. Towards this goal, a recent study has shown that the 
mechanical properties of CNTs promote differentiation of MC3T3-E1 
osteoblasts towards osteogenic lineage [73]. A study isolating the 
conductivity attribute of CNTs demonstrated that multiwall carbon 
nanotube (MWNT)-incorporated hydrogels increased cell proliferation 
of myocytes as well as fostered the growth of multinucleated cells with 
higher actin filament interactions as compared to the control groups 
[78]. CNTs can be functionalized to exhibit varying chemical properties 
that influence cell phenotype, shown in a study investigating single wall 
carbon nanotube (SWNT) conjugation with poly(m-aminobenzene 
sulfonic acid) and polyethylene glycol in which neurons exposed to 
more positively charged groups exhibited greater neurite length and 
had additional growth cones [79]. Since CNTs exhibit numerous traits 
that have the potential to impact cell lineage commitment, there is a 
need to delineate the effects of each specific CNT characteristic on 
hPSC behavior.

Microfluidics

This technique allows for precise regulation of fluid flow and 
microenvironmental geometry, usually in the form of channels with 
similar dimensions to that of the cell type under investigation. Volumes 
can easily be controlled to levels of 10-18 liters [80], and the flow rates 
are manipulated so that shear stress in the in vitro microenvironment is 
optimized. Microfluidic platforms have been used extensively to study 
cell biology, specifically cellular adhesion forces [81], the cytoskeleton 
[82], and the culture of embryos [83-85]. This platform is useful in 
determining the influence of shear stress on individual cells, as well as 
mimicking the effects of capillary and interstitial flow, but the scale of 
this technique is not practical for larger magnitude tissue regeneration 
studies.

Biophysical Signals for Differentiating Pluripotent 
Stem Cells

As described in the previous section, several methods for tuning 
biophysical signals for influencing stem cell behavior have been 
explored. Nanoscale signals such as shear stress, strain, material 
elasticity, topographical variation, and cell shape all affect cellular 
function and lineage specification. This section discusses how each 
of these factors govern PSC behavior; specifically cell adhesion, 
proliferation, alignment, and differentiation.

Mechanical cues

Cells experience mechanical cues such as stress and strain in the 
in vivo microenvironment. Muscle contraction and relaxation, bone 
compression and decompression, cell migration, fluid flow, and tissue 
regeneration all cause variations of mechanical forces in the body. The 
ECM also has a range of elastic moduli that generate physical stimuli 
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for attached cells through focal adhesions. These mechanical cues 
are transduced through focal adhesion kinase (FAK) and Src family 
signaling [37]. Furthermore, integrins are activated by stress, strain, 
and differing elastic moduli. This in turn increases focal adhesion 
strength and upregulates integrin mediated signaling throughout the 
cell. The biochemical pathways that are activated as a result of physical 
stimuli are part of a positive-feedback loop which further activates 
actomyosin cytoskeleton tension and increases focal adhesion strength 
[37,86,87]. As a result, researchers have explored how varying signals 
alter hESC behavior in vitro with hopes of determining what physical 
forces, separately or in combination, control lineage commitment. 

Cyclic strain and stress: The effect of mechanical cues on cell 
function has been studied for many cell types, and has established 
general knowledge regarding cell behavioral responses [36,88-91]. 
Recent studies have made great strides in determining the impact 
physical stimuli have on hESCs. For example, the effect of cyclic strains 
on hESCs inhibited differentiation and increased self-renewal [92]. 
This was caused by the upregulation of TGFβ1, Activin A, and nodal 
which initiates the phosphorylation of Smad 2/3 [93]. Another study 
showed that cyclic stress through integrin-mediated adhesions induces 
spreading of mouse ESCs and decreased the expression of pluripotency 
marker Oct3/4 [94].

Shear stress: Shear flow has also been investigated as a mechanical 
cue for PSCs since it is a dynamic stress found in vivo, most commonly 
exerted on cells in the circulatory system [95]. Mouse ESCs placed in 
a microfluidic chamber demonstrated that a higher flow rate of 1.1 
μL/min produced larger, round colonies as compared to slower rates 
of 0.001 μL/min and 0.019 μL/min [96]. This rounded phenotype 
indicates decreased cytoskeletal tension. When ESCs are subjected 
to highly controlled shear flow they differentiate into endothelial or 
specialized cardiovascular cells [97,98]. Furthermore, ESCs exposed to 
culture conditions with shear stress express greater levels of endothelial 
cell proteins CD31 and Runx1, and cells formed hematopoietic colonies 
[99]. 

Material properties: A recent study demonstrated that matrix 
elasticities of 1 kPA, 8 kPa, and 25 kPa lead hMSCs respectively towards 
neurogenic, myogenic, and osteogenic lineage [91]. This discovery, 
along with the known fact that matrix mechanics are a definitive 
factor in tissue morphogenesis and cell function [100-102], influenced 
researchers to investigate the response of ESCs to material properties. 

ESCs are generally cultured on stiff 2D cell culture plates. Studies 
have shown that cell traction and colony stiffness increase when ESCs 
are grown on traditional rigid substrates, which also correlates with the 
downregulation of Oct3/4 in mouse ESCs [94,103]. Cells grown on soft 
polyacrylamide gels with a stiffness of 0.6 kPA formed round, compact 
colonies that had high Oct3/4, Nanog, and Alkaline Phosphatase 
expression compared to the polystyrene plates with stiffness of 
approximately 4 MPa [103]. This study demonstrated that soft materials 
cause cells to exhibit low traction forces and colony stiffness, and as a 
result, self-renewal and pluripotency of ESCs is maintained. 

Cell shape

Stem cell shape regulates physiology, controls proliferation, and 
ultimately governs lineage specification [104, 105]. Cells have particular 
shapes that optimize carrying out specific cellular functions: neurons 
have long bodies to efficiently deliver signals that can span the entire 
length of the human figure, where adipocytes are spherical to store 
lipids [37]. From a developmental point of view, signals from the stem 

cell niche induce conformational changes which then influence tissue 
structure and purpose [106-108]. 

One of the first experiments demonstrating the impact of cell 
size on behavior used 20 μm2 and 75 μm2 fibronectin islands to show 
that size directly controls apoptosis and proliferation, respectively 
[109]. Furthermore, studies have shown that restricting hESC colony 
size regulates differentiation, with smaller cell groupings favoring 
endoderm commitment over ectoderm [110]. Patterning adhesive 
ligands to control hESC colony size determined large colonies with a 
high cell density microenvironment promote pluripotency, controlled 
through a BMP-mediated Smad1 gradient. This gradient forms due to 
the interaction of hESCs and hESC-derived extraembryonic endoderm 
[111]. These findings are thought to occur due to cell-cell contact, 
varying mechanical stresses throughout the body of cells, and soluble 
factor gradients. 

Topographical cues

Topography plays a key role in cell maintenance and function. 
Nanoscale architecture has grooves, ridges, pits, and pores in vivo; 
for example proteins in the ECM are generally arranged in a fibrous 
manner with these topographical properties. These fibrillar networks 
are approximately 10-100 nanometers but can be several microns 
[112,113], and the bone marrow contains numerous nanoscale pores 
that provide additional cues for stem cells [95]. Nanotopography is 
important because cells receive signals through specific binding sites 
that integrins recognize, and integrin signaling is controlled through 
nanoscale ECM-cell interactions [39]. Surface features as small as 10 
nm have the ability to influence cell adhesion [114]. When cells bind 
to integrins, tyrosine kinase and phosphatase signaling is activated, 
and both are important for cell fate and gene expression [37]. 
Through these biophysical cues, stem cell adhesion and cytoskeleton 
organization are regulated, thus cell decisions regarding proliferation, 
migration, elongation, cell alignment, polarization and differentiation 
are impacted [112,115-122]. Studies using MSCs determined that 
the nanoscale topography potentially acts through spatial control of 
ligands and regulatory factors, and the interplay between physical and 
biochemical cues determine cell morphology and phenotype [95]. This, 
among other principles discovered by examining hMSC response to 
alterations in topography, can be applied to hPSCs. 

Topography is a powerful tool since, not only is cytoskeleton 
tension altered like in cell shape experiments, but also entire 
molecular arrangement and dynamic organization of cellular adhesion 
mechanisms are affected [37]. Polymethylglutarimide (PMGI) 
nanofibers were used as scaffolds to maintain mouse ESC stemness and 
it was concluded that fiber density and structure were important factors 
in retaining pluripotency. This study also found that mouse ESCs had 
the ability to differentiate into all three germ layers on this substrate 
[123]. Studies observing the response of hESCs to nanotopography have 
used fibronectin coated poly(di-methyl siloxane) (PDMS) substrates 
with 600 nm ridges, 600 nm spacing, and 600 +/- 150 nm height. 
Single cells were placed on the surface for 24 and 48 hours, and it was 
determined that the nanotopographic surfaces increased cell alignment 
and elongation, but decreased projected cell area and proliferation 
[124]. An experiment utilizing polyamide nanofibrillar surfaces 
covalently linked to FGF-2 found that this substrate enhanced hESC 
proliferation [125]. The use of fibrillar nanoarchitecture in scaffolds 
has the potential to spatially align and organize cells while retaining 
pluripotency, however cell proliferation capabilities depends on the 
ridge size and surface chemistry of the scaffold and must be further 
optimized to sustain hPSC growth. 
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Another study used UV-assisted capillary force lithography to create 
350 nm ridge/groove pattern arrays, then demonstrated the ability of 
the surface topography to direct hESCs towards neuronal lineage in the 
absence of differentiation-inducing soluble factors [126]. Furthermore, 
neural differentiation of ESCs was demonstrated in an experiment 
using poly(L-lactic acid) (PLLA) electrospun nanofibers incorporated 
with SWNTs and MWNTs. Scaffolds containing the carbon nanotubes 
promoted greater differentiation towards neural lineage, shown by 
an upregulation of Map-2. Differentiated cells aligned on the fibers 
demonstrating the influence of physical cues on cell morphology and 
lineage commitment [127]. Another recent study also investigated the 
effects of topography on human iPSC differentiation towards neuronal 
lineage [128]. A PDMS substrate was patterned with ridges/grooves 
of width 350 nm and groove depth of 300 nm, then single cells were 
placed on the nanostructures and allowed to differentiate for 4 days. 
Cell alignment on the 350 nm width groove substrate was compared 
to surfaces with 2 μm and 5 μm widths, and it was found that cells 
responded with the highest degree of alignment to the nanogrooves. 
Additionally, human iPSCs placed on the 350 nm substrate expressed 
the highest levels of neuroectodermal markers NPY and SYT4, 
demonstrating the importance of topography in guiding pluripotent 
stem cell phenotype. Collectively, these results indicate that controlling 
hPSC alignment on nanogroove structures directs cell differentiation 
towards neuronal lineage, and ESCs on random electrospun fibers 
incorporated with carbon nanotubes will purposefully elongate with 
the direction of the fibers and upregulate neuronal marker gene Map-2 
(Figure 2).

MWNT films were employed to investigate the response of hESCs 
to surface roughness. hESC colonies favored rougher surfaces for 
attachment, exhibited flattened morphology with standard colony 
size, and retained pluripotency when cultured on MWNT films [129]. 
A similar study grafted CNTs with poly(acrylic acid) (PAA) to form a 
thin film, and the results indicated that this substrate, in combination 
with neural growth factors, stimulates hESC differentiation towards 
neural lineage at a higher rate than a conventional poly-L-ornithine 
(PLO) substrate often used in generating neurons from stem cells [130]. 

Another study utilized an array of CNTs conjugated with ECM proteins 
to determine the hPSC behavioral response when cultured on this 
platform. This array was found to support undifferentiated hESC and 
iPSC growth as well as self-renewal and pluripotency marker expression 
[131]. Furthermore, it was shown that both types of hPSCs cultured on 
the CNT arrays were able to differentiate towards ectoderm, mesoderm, 
and endoderm lineages [131]. The hPSCs grown on the CNT arrays 
were then directed towards spontaneous differentiation, and in reaction 
to the CNT topography, preferentially expressed mesodermal markers 
due to the physical stimuli exerted on the cells [131]. A similar study 
investigated culturing hESCs on a collagen/CNT matrix. Colonies 
were placed on tissue culture plates coated with gelatin, collagen, and 
collagen/CNTs and allowed to spontaneously differentiate. Colony 
morphology on the gelatin substrates was random and spread out, while 
hESCs on the collagen as well as the collagen/CNT matrices exhibited 
an elongated shape that aligned with the fibrils. By day 3, hESCs on 
the collagen/CNT surface expressed the early neural progenitor marker 
nestin significantly higher than the cells on the collagen substrate. By 
day 6, all three groups expressed nestin, with the highest levels detected 
in the collagen/CNT group followed by the collagen and gelatin groups, 
respectively [132]. These groundbreaking studies involving CNTs have 
provided insight on stimuli controlling hPSC lineage specification. 
CNT films maintain hPSC pluripotency and undifferentiated colony 
phenotype, substrates containing fibrillar architecture with CNTs 
promote hESC differentiation towards neural lineage, and CNT arrays 
exert physical forces on hPSCs that guide them towards mesoderm 
lineage commitment.

In another study, surface nanoroughness of silica-based glass 
wafers was altered and hESCs were placed on the various substrates 
in single cells. hESCs on the control glass surface demonstrated highly 
branched morphology with many cytoplasmic extensions, while cells 
on the nanorough glass were compact with few, short filapodia. Cells 
on a rough surface patterned with square-shaped smooth islands 
favored attachment to the smooth glass instead of the nanorough areas 
and expressed pluripotent marker Oct3/4, and hESCs placed on an 
exclusively rough surface spontaneously differentiated. Proliferation 
of hESC colonies was determined by placing cells on smooth glass 
and nanorough substrates, and it was determined that doubling time 
of hESCs on the control surface was 41 hours compared to a slower 
71 hour doubling time of colonies on the rough surface [133]. In 
opposition, a study showed that silica colloidal crystal with diameters 
of 120, 400, and 600 nm coated with collagen I maintained the 
expression of murine ESC markers in comparison to smooth glass. 
However, colonies exhibited reduced spreading on the surface with 
altered topography [134]. Another study coated cell culture plates with 
poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium 
hydroxide], then demonstrated that hESC colonies cultured on this 
substrate maintained their proliferation, self-renewal, and pluripotency 
capabilities [135]. A unique study used graphene and graphene oxide 
to coat glass coverslips and observed mouse iPSC behavior on the 
different substrates. It was found that iPSCs on the graphene and 
smooth glass surfaces proliferated at similar rates, but cells on the 
graphene oxide substrate had greater adhesion and proliferation. The 
graphene substrate maintained cells at an undifferentiated state, while 
the graphene oxide surface promoted spontaneous differentiation 
[136]. Overall, rough surfaces promote PSC adhesion with a more 
compact morphology, however, studies have found opposing evidence 
for whether or not nanorough surfaces maintain pluripotency and an 
undifferentiated state, or promote spontaneous differentiation. There 
are also conflicting results determining if these surfaces foster or hinder 

Figure 2: Biomaterials with (a) fibrous architecture, (b) surface roughness and 
varying nanotopographical features, and (c) nano grooves/ridges provide cues 
to cells. These microenvironmental signals, along with other mechanical cues 
mentioned in this review, have the ability to influence cell migration, adhesion, 
differentiation, proliferation, and alignment.
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proliferation, therefore more studies are warranted to understand how 
PSCs respond to rough culture substrates.

Conclusions
Tissue engineering has demonstrated the ability to generate desired 

cell types by combining the knowledge of biomaterials, stem cells, and 
signaling factors. The use of hPSCs in regenerative medicine has immense 
potential for treating numerous ailments, but experimental methods 
for solely and completely creating the desired tissues is necessary to 
avoid teratoma formation. Towards this goal, researchers have focused 
on mimicking in vivo microenvironmental cues in differentiation 
studies to parse which factors control lineage commitment. Through 
carefully designed scaffolds and substrates, scientists have advanced 
the understanding of how nano-microenvironmental cues define cell 
behavior. By gaining this knowledge, stem cell differentiation can be 
further specified by combining nano-architecture and insoluble factors 
with other important biochemical cues. 
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