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Abstract
Growing evidence demonstrates that prolonged exposure to general anesthetics during brain development 

induces widespread neuronal cell death followed by long-term memory and learning disabilities in animal models. 
These studies have raised serious concerns about the safety of anesthetic use in pregnant women and young 
children. However, the underlying mechanisms of anesthetic-induced neurotoxicity are complex and are not well 
understood. MicroRNAs are endogenous, small, non-coding RNAs that have been implicated to play important roles 
in many different disease processes by negatively regulating target gene expression. A possible role for microRNAs 
in anesthetic-induced developmental neurotoxicity has recently been identified, suggesting that microRNA-based 
signaling might be a novel target for preventing the neurotoxicity. Here we provide an overview of anesthetic-induced 
developmental neurotoxicity and focus on the role of microRNAs in the neurotoxicity observed in both human stem 
cell-derived neuron and animal models. Aberrant expression of some microRNAs has been shown to be involved in 
anesthetic-induced developmental neurotoxicity, revealing the potential of microRNAs as therapeutic or preventive 
targets against the toxicity. 

MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity
 Twaroski D1,2, Bosnjak ZJ1,2, Xiaowen Bai1,2*

1Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
2Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA

Keywords: MicroRNAs; Anesthetics; Developmental neurotoxicity;
Stem cells

Introduction
In 1979, Steen and Michenfelder compiled several clinical case 

studies into a review article and highlighted the possible issue of 
anesthetic-induced neurotoxicity [1]. The case reports in this article 
detailed children having adverse effects to anesthetic administration. 
However, it was around this time that the terms “apoptosis” and 
“excitotoxicity” were just being coined and as such, much of the 
research in the field relied solely on observations in the clinic rather 
than on experimental findings. It wasn’t until 1999 that Olney et al. 
first reported, using an experimental animal model, that anesthetics 
could induce toxicity in the developing brain and that this toxicity 
was specific to the period of rapid synaptogenesis in the brain [2,3]. 
They observed that blockade of the N-methyl-D-aspartate receptor 
(NMDA) receptor could induce significant cell death in the brains 
of 7-day old rat pups and suggested that their findings “may have 
relevance to human neurodevelopmental disorders involving prenatal 
(drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to 
drugs that block NMDA receptors”. Since the majority of anesthetic 
agents act either as type-A γ-aminobutyric acid receptor (GABAA 
receptor) agonists or NMDA receptor antagonists, this seminal study 
raised important questions about the toxic effects of anesthetics on 
the developing brain. Understanding whether all anesthetics or only a 
subset of anesthetics could induce this toxicity and the mechanisms by 
which this toxicity occurs became the focus of additional studies.

Evidence of Developmental Neurotoxicity from 
Different Models
Animal studies 

It has been reported in several studies that the developing 
brain is most vulnerable to anesthetics during the period of rapid 
synaptogenesis [4-6]. This is a time in the developing brain in which 
many synapses are being formed between neurons.This period ranges 
differently among species. For example, in rodents it lasts about the first 
2 weeks of life, while in humans it ranges from about the 3rd trimester 
of pregnancy through the 2nd or 3rd year of life [7,8]. Several studies 
done in developing rodent models found that nearly all anesthetics 

including isoflurane, sevoflurane, ketamine, propofol and anesthetic 
combinations could induce cell death in the brains of these animals 
and lead to learning and memory impairments later in life [9-13]. For 
example, Shen and colleagues found that postnatal day (PD) 3 Sprague-
Dawley rats displayed significant impairments in spatial learning and 
memory, as assessed by the Morris Water Maze test following a single 
exposure to 1% sevoflurane [11]. They found that these effects were 
dose and exposure number dependent.They also found that 7- week-old 
rats were insensitive to sevoflurane exposure and displayed equivalent 
performance in the Water Maze test with or without sevoflurane 
exposure, confirming that vulnerability to anesthetics is confined to an 
early period in brain development. In addition, Pesic et al. have shown 
that propofol administration induced neuroapoptosis in the cortex and 
thalamus of PD7 rat pups through an extrinsic pathway and activation 
of caspase-3 [14]. Liu et al. also observed increases in neuroapoptosis in 
the frontal cortex of PD7 rat pups exposed multiple times to ketamine.
They also found that rat pups exposed to ketamine had altered 
expression of apoptotic related genes as assessed by microarray [15].

Although these initial rodent studies were extremely important, 
questions were raised about the translatability of these findings to 
humans. Brambrink, Creeley and others moved to using Rhesus 
Macaques to study the effects of anesthetics on the developing brain.
This allowed for studies on a model more closely related to humans.
In addition, the use of larger animals made it easier to monitor 
hemodynamic properties of the animals to control for confounding 
variables of anesthetic administration such as cardiovascular, 
respiratory or metabolic distress. They found that isoflurane, 
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propofol, and ketamine could all induce increases in cell death in 
both fetal and neonatal rhesus monkey brains with careful control of 
hemodynamic properties [16,21]. They also went on to show that the 
toxic effects of isoflurane and propofol affected both the neuronal and 
oligodendrocyte populations, but did not appear to affect the astrocytes 
in the brain [18,22]. This was an extremely important finding since 
oligodendrocytes are key supporting cells in the brain and are critical 
in neuronal myelination [23,24]. Although astrocytes are important 
neuronal supporting cells, they are very low in number in the 
developing brain and increase rapidly throughout development [25]. 
The findings from these studies suggested that anesthetics could both 
directly and indirectly induce neuronal cell death in the developing 
brain. The extent of anesthetic-induced neurotoxicity may depend on 
the following variables: 

•	 Anesthetic dose, exposure duration, and number of 
exposures [26,27]

•	 The receptor type being activated or inactivated [9,16]

•	 Single anesthetic or combination of different anesthetic 
agents [9]

•	 The stage of brain development [12,16,28]

Clinical significance and human studies
These and other studies conducted in animals led to a push 

for human epidemiologic studies and prompted the International 
Anesthesia Research Society (IARS) to partner with the US Food and 
Drug Administration to form Smart Tots (www.smarttots.org), a 
research initiative aimed at evaluating the safety of anesthetic use in 
the pediatric population.In 2009, DiMaggio et al. found that children 
exposed to general anesthesia prior to the age of 3 were twice as likely to 
be diagnosed with behavioral or developmental disorders as unexposed 
children [29]. This was a retrospective study of more than 5,000 children 
enrolled in the New York Medicaid program and the results of this 
study raised significant safety concerns about the use of anesthetics in 
children. In 2010, Wilder and colleagues went on to evaluate the medical 
and educational records of over 5,000 children in a retrospective study 
aimed at identifying whether anesthetic administration early in life was 
linked to learning disabilities later on in humans.In this study, 593 of 
the children had received general anesthesia prior to the age of 4.They 
found that there was not a significant increase in learning disability 
diagnoses in children that had received a single administration of 
anesthesia, but that there was a significant increase in children that had 
received multiple administrations of anesthesia [30]. 

Several additional human retrospective studies found that there 
was a link between early exposure to anesthetics and later learning and 
behavioral abnormalities [31-33]. However, additional studies found 
no connection between early exposure to anesthetics and learning and 
behavioral abnormalities later in life. For example, in 2009 Bartels and 
colleagues assessed educational achievement and cognitive performance 
in over 1,100 monozygotic twin pairs from the Netherlands twin 
registry for which anesthetic exposure data was available. They found 
that there was a significant increase in learning disabilities in twins 
exposed to anesthesia when compared to unexposed twins.

However, they found no difference between the unexposed and 
the exposed twin in discordant pairs suggesting that other factors may 
be responsible for the increases in learning disabilities rather than the 
anesthetic exposure [34]. In addition, in 2011 Hansen et al. assessed the 
academic performance of 2,689 Danish children that had undergone 
inguinal hernia repair surgery in infancy. An age-matched control 
group consisting of 14,575 children was also studied. They found that 

exposed children performed worse academically than their unexposed 
counterparts. However, they also found that once the data had been 
controlled for confounding variables, there was not a statistically 
significant difference between the group [35].

Despite the large scale efforts of the Smart Tots organization, the 
effect of anesthetics on the developing human brain remains uncertain.
However, the number of laboratory studies over the last 7 years aimed 
at addressing this issue has increased nearly 5-fold [36]. Many human 
epidemiological studies are still ongoing as well in this field today 
including the Pediatric Anesthesia Neuro Development Assessment 
(PANDA) study out of Columbia University, the General Anesthesia 
Safety (GAS) study from Children’s Hospital Boston and the Mayo 
Safety in Kids (MASK) study being conducted at Mayo Clinic.Although 
the results of these human epidemiologic studies will be extremely 
useful, it will be difficult to properly dissect out the effects of anesthetic 
exposure from the effects of surgery, underlying medical conditions, 
socioeconomic status and other potentially confounding variables.
At this point, there is not sufficient evidence in humans regarding 
the toxic effects of anesthetics on the developing brain, and as such, 
clinicians cannot be properly advised on the matter.

The human epidemiological studies have been unable to determine 
the safety of anesthetic use in the pediatric population and millions of 
children are exposed to anesthetics every year in the United States alone 
[37]. It is critical to develop a better human model by which to study 
anesthetic-induced developmental neurotoxicity and the mechanisms 
responsible for this toxicity in order to better guide clinicians and to 
develop possible preventative strategies.The emerging model of human 
embryonic stem cell-derived neurons has allowed us to directly assess 
the effects of anesthetics on developing human neurons and dissect out 
the mechanisms by which these anesthetics induce toxicity.

Human embryonic stem cell-derived neuron studies
Embryonic stem cells (ESCs) are cells derived from the inner cell 

mass of a blastocyst.The human embryo reaches the blastocyst stage 
(a pre-implantation stage) at day 4-5 post fertilization [38]. ESCs are 
inherently pluripotent, meaning that they can differentiate into cells 
from all three germ layers (ectoderm, endoderm, and mesoderm) and 
can replicate indefinitely.This, along with their high differentiation 
efficiency makes them more advantageous than other stem cell 
types such as adult stem cells.In 1981, Evans and Kaufman from the 
University of Cambridge and Martin from the University of California 
San Francisco discovered mouse ESCs and reported new techniques 
for culturing these cells in vitro [39,40]. The establishment of these 
critical in vitro techniques opened the doors to many studies aimed at 
understanding development and disease.It wasn’t until 1998 that James 
Thompson and colleagues at the University of Wisconsin-Madison 
developed a technique to isolate and culture human ESCs (hESCs) in 
vitro [38].The seminal work of this group allowed for mechanistic based 
studies using a human cell line. This eliminated potential concerns 
regarding the relevancy of animal models to humans.

The generation of neurons from hESCs was first reported in 2001 
by several groups. Carpenter and colleagues reported a method for 
deriving neurons from hESCs using embryoid body (EB) formation 
and immunoselection [41]. They found that the derived cells stained 
positive for neuron-specific markers, responded to neurotransmitter 
application, and displayed voltage-dependent channels on their cell 
surface.However, these initial protocols involved multi-step approaches 
and the immunoselection required to purify the populations could 
result in a mixed population of cells.In 2003, Schulz and colleagues 
reported a novel technique for the directed differentiation of neurons 
from hESCs [43]. This protocol involved EB and rosette formation.
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Our group followed a similar approach and improved the efficiency 
of the differentiation by manual selection of rosettes. Neuronal 
differentiation was observed by morphological assessment in the culture 
after six days of culturing the hESC-derived neural stem cells (NSCs) 
in neuronal differentiation medium. Differentiated neurons exhibited 
round cell bodies with small projections. Two-week-old neurons 
expressed the neuron-specific marker β-tubulin III, the synaptic 
marker synapsin-1, the postsynaptic protein Homer [43,44] and 
immature neuron marker double cortin [45]. In addition, differentiated 
neurons exhibited functional synapses [46]. Development of an in vitro 
neurogenesis system using human stem cells has opened up avenues of 
research for advancing our understanding of human brain development 
and the issues relevant to anesthetic-induced developmental toxicity in 
human neuronal lineages under controlled conditions. Recent studies 
from our and other groups, showed that isoflurane influenced human 
NSC proliferation and neurogenesis [47] and ketamine dose- and time- 
dependently induced hESC-derived neuron death [43]. Additionally, 
when cells underwent different lengths of exposure to propofol and 
were subjected to single and multiple exposures, propofol induced 
cell death in the hESC-derived neurons in a time, dose, and exposure 
number-dependent manner [45]. These findings in stem cell-derived 
human neurons have recapitulated the results of the animal and human 
epidemiologic studies [26,27,30].

Current Mechanisms of Anesthetic-Induced 
Developmental Neurotoxicity

Despite many findings in animal models that anesthetics induce 
neurotoxicity in the developing brain, the mechanisms by which this 
toxicity occurs remain largely unknown.A possible role for calcium 
signaling, reactive oxygen species (ROS) production, mitochondrial 
abnormalities, neuroinflammation, and epigenetic changes in the 
mechanism of anesthetic-induced neurotoxicity have all been reported 
[43,48-50]. Sinner et al. found that exposure of cultured rat hippocampal 
neurons to ketamine resulted in increases in intracellular calcium 
and neuronal apoptosis [51]. Intracellular calcium levels are tightly 
regulated under normal conditions. Persistent elevation of intracellular 
calcium, beyond normal levels, can induce apoptosis [52]. In response 
to ketamine, there was a significant increase in ROS production in the 
cytosol and superoxide generation within mitochondria in ketamine-
treated hESC-derived neurons, indicating a mitochondrial origin of 
ROS. Trolox, a ROS scavenger, prevented ketamine-induced ROS 
production and apoptosis in differentiated human neurons [43]. 
Several animal studies have suggested that accumulation of ROS was 
associated with anesthetic-induced mitochondrial damage [53,54]. 
Application of the antioxidant (7-nitroindazole, a nitric oxide synthase 
inhibitor) attenuated ketamine-induced rat forebrain-derived cultured 
neuronal cell death [55]. 

Although many different mechanisms and pathways have 
been implicated to play a role in anesthetic-induced neurotoxicity, 
the mitochondria appear to play key roles in this process through 
their crucial involvement in cellular processes and apoptosis [56]. 
Ketamine-induced apoptosis in stem cell-derived human neurons was 
accompanied by a significant decrease in mitochondrial membrane 
potential and an increase in cytochrome c release from mitochondria 
into the cytosol. In addition, most control neurons showed elongated 
and inter-connected, tubular mitochondria while much shorter 
and smaller mitochondria were prevalent in the ketamine-treated 
culture [43]. Dynamin-related protein 1 (Drp1) is a key regulator of 
mitochondrial fission and is primarily distributed in the cytoplasm of a 
healthy cell, but shuttles between the cytoplasm and the mitochondrial 
surface. It has also been shown that exposure of neonatal rat pups to 

general anesthetics induced significant decreases in the level of Drp1 
in the cytosol and increases in mitochondrial Drp1 levels [57], leading 
to increases in mitochondrial fission. Inhibition of mitochondrial 
fission was shown to prevent mitochondrial cytochrome c release 
and apoptotic cell death [58]. Loss of mitochondrial membrane 
potentialand release of cytochrome c from mitochondria are key events 
in initiating mitochondria-related apoptosis [59], indicating that the 
increased mitochondrial fission possibly plays an important role in the 
toxic effects of general anesthetics.

It was also reported that neuroinflammation was involved in 
anesthetic-induced neurotoxicity and cognitive impairment in the 
developing mouse brain. Exposure to 3% sevoflurane for 2 hours daily 
for 3 days induced cognitive impairment and neuroinflammation (e.g., 
increased interleukin-6 levels) in the developing mouse brain but not 
in adult mice. Anti-inflammatory treatment (ketorolac) attenuated 
the cognitive impairment, implicating neuroinflammation as a key 
mediator of anesthetic-induced neurotoxicity [49]. Additionally, 
alterations in the levels of a variety of neurotrophins have been 
implicated in anesthetic-induced developmental neurotoxicity. It was 
observed that exposure of rat pups to propofol induced a significant 
decrease in the level of nerve growth factor in the thalamus , a protein 
that is critical for the survival and growth of neurons. Propofol 
exposure was also shown to alter the expression levels of a variety 
of key neurotrophic factor receptors and downstream targets such 
as Akt and Erk [60]. It was recently reported by Han and colleagues 
that exposure of 7-day old mouse pups to 2 hours of 1.5% sevoflurane 
increased the phosphorylation of methyl-CpG island binding protein 
2 in the hippocampus. The sevoflurane-induced increases of neuronal 
cell death and phosphorylation of methyl-CpG were reversed by pre-
treatment with memantine, a partial antagonist of the NMDA receptor 
[48], suggesting that sevoflurane-induced epigenetic alterations might 
also play important roles in the neurotoxicity. Table 1 depicts example 
anesthetic-induced developmental neurotoxicity studies and the key 
findings from these studies.

Despite these findings, the current neurotoxicity mechanisms 
are incomplete and work remains to be done to fully elucidate these 
pathways. A potential functional role for microRNAs in anesthetic-
induced developmental neurotoxicity has recently emerged. 

MicroRNAs and Anesthetic-Induced Developmental 
Neurotoxicity
Micro RNAs

Mature microRNAs are small non-coding RNA molecules that are 
approximately 22 nucleotides in length [61]. microRNAs are highly 
conserved and are believed to be critical components in evolution [62]. 
MicroRNAs can bind with perfect or imperfect complementary binding 
to target messager RNA (mRNA), leading to down regulation of protein 
expression through mRNA cleavage or translational repression[63,64]. 
A single microRNA can have multiple mRNA targets and one mRNA 
can be regulated by one or multiple miRNAs.

As depicted in Figure 1, microRNAs are transcribed in multiple 
hairpin structures in the nucleus by RNA polymerase II as large 
primary transcripts (pri-miRNAs). The pri-miRNAs are cleaved by 
the RNase III enzyme Drosha in the nucleus into hairpin loops called 
precursor microRNAs (pre-miRNAs). The resulting pre-miRNAs are 
approximately 70-nucleotides in length. The pre-miRNAs are exported 
out into the cytoplasm by Exportin 5. Once in the cytoplasm, the pre-
miRNAs are further processed by the RNase III enzyme Dicer which 
removes the hairpin loop forming the mature miRNA strands. The 
2 strands unwind and the more thermodynamically unstable strand 
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Anesthetic Dose/Duration Model Main findings Reference

Sevoflurane 3%, 6 hours PD7 Sprague-Dawley rats

Sevoflurane elevated caspase-3 
activation and ROS levels, 
decreased mitochondrial 
cardiolipin contents, altered 
cellular ultrastructure in the 
cerebral cortex and metabolic 
pathways of glucose and 
intracellular antioxidants.

Liu, et al. [109]

Ketamine 25 µM, 24 hours
Hippocampal neuron cultures 
from 19-day-old Wistar rat 
embryos

Ketamine exposure significantly 
increased the number of 
apoptotic neurons and the 
cytosolic calcium concentration. 
Ketamine also led to a down-
regulation of the CaMKII and a 
decrease in synapsin.

Sinner, et al. [51]

Sevoflurane 1.5%, 2 hours PD7 mouse pups

Sevoflurane increased the 
phosphorylation of methyl-CpG 
island binding protein 2 in the 
hippocampus and sevoflurane-
induced increases of neuronal 
cell death and phosphorylation 
of methyl-CpG were reversed by 
pre-treatment with memantine, a 
partial antagonist of the NMDAR

Han, et al. [48]

Propofol 25 mg/kg, 1 dose PD14 Wistar rats

Propofol induced a significant 
decrease in the level of nerve 
growth factor in the thalamus 
and altered the expression 
levels of a variety of key 
neurotrophic factor receptors 
and downstream targets such as 
Akt and Erk.

Popic, et a. [60]

Midazolam/Nitrous Oxide/
Isoflurane

9 mg/kg midazolam, 75% NO, 
0.75% iso, 6 hours PD7 Sprague-Dawley rats

Anesthesia exposure up-
regulated reactive oxygen 
species generation and down-
regulated superoxide dismutase. 
Exposure to the anesthesia was 
also associated with increased 
mitochondrial fission. 

Boscolo, et al. [57]

Ketamine 100 µM, 24 hours Human stem cell-derived 
neurons

Ketamine exposure increased 
neuronal apoptosis, ROS 
production, and mitochondrial 
fission, ketamine induces 
implicating mitochondrial 
dysfunction as a key mechanism 
by which neurotoxicity. 

Bai, et al. [45]

Isoflurane Surgical dose, 5 hours Fetal rhesus macaques

Isoflurane induced a significant 
increase in apoptosis of neurons 
and oligodendrocytes in the fetal 
monkey brain. 

Creeley, et al. [110]

Table 1: The representative animal studies regarding anesthetic-induced developmental neurotoxicity

typically degrades. The mature microRNA strand then incorporates 
into the RNA-Induced silencing complex (RISC) where it can act to 
induce silencing of its target mRNA [61,64].

The first microRNA was discovered in 1993 by Lee et al. in C. 
elegans [65]. However, it wasn’t until 2000 that they were recognized as 
a distinctive group of RNA molecules responsible for mRNA regulation 
[66,67]. In the decade following their initial discovery, microRNA 
research flourished and their importance in cancer and the heart 
was quickly discovered along with suitable approaches to manipulate 
their expression. Thousands of microRNAs have since been identified 
in various organisms through random cloning and sequencing or 
computational predictionand shown to be involved in the regulation 
of almost every cellular event  in developmental and physiological 
processes [68]. Dysregulation of microRNAs has been reported to play 
a fundamental role in the onset, progression, and dissemination of 
many human diseases including neurodegeneration, and as such, they 
have become attractive therapeutic targets.

For example, microRNAs are highly enriched in the brain and 
have been implicated to play important roles in memory, neurogenesis, 
synaptic plasticity, and neuronal degeneration [69]. Several studies 
have cited dysregulation of microRNA expression in the postmortem 
brain tissue of neurodegenerative disease patients.One study found that 
there was a down regulation of the brain-specific microRNAs: miRs-
9, -29b, and -181 in Alzheimer’s disease patients [70] while another 
study revealed that similar and additional brain-specific microRNAs 
including miRs-9, -29b, -124a, and -132 were down-regulated in the 
brains of Huntington’s disease patients [71]. However, the potential 
functions of microRNAs in anesthetic-induced neurotoxicity are just 
starting to be investigated. More recently, five studies from our and 
other laboratories pointed to important roles of several microRNAs 
(e.g., miR-21, miR-34a, miR-34c, miR-124, and miR-137) in anesthetic-
induced developmental neurotoxicity using various experimental 
models [45,72-75]. These studies have been summarized and are shown 
in Table 2.
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miR-21: MicroRNA-21 (miR-21) was one of the first microRNAs 
discovered in humans and its sequence was found to be highly 
conserved across species [76]. The human miR-21 gene is located 
within a coding gene known as vacuole membrane protein-1 on 
chromosome 17q23.2. Despite being located within a coding gene, the 
human miR-21 gene contains its own promoter and can be transcribed 
independently [77]. miR-21 has been identified to be involved in many 
cancers and is a well-established anti-apoptotic factor. Dysregulation 
of miR-21 has been shown to mediate hypoxia-induced neuroapoptosis 
[78] while overexpression of miR-21 decreased apoptosis in a rat model 
of traumatic brain injury [79]. In addition, exposure of fetal cerebral 
cortical-derived neuroepithelial cells to ethanol, an NMDA receptor 
antagonist and GABAA receptor agonist, was shown to suppress miR-
21[80].

Recently, Twaroski et al. used hESC-derived neurons for the first 
time to study microRNA mechanisms governing anesthetic-induced 
neurotoxicity by exposing 2-week old neurons to 6 hours of 20 µg/
mL propofol or the vehicle control, dimethyl sulfoxide. To examine 
whether microRNAs were playing a role in the observed propofol-
induced toxicity, 84 of the most abundantly expressed microRNAs 
were screened using commercially available qRT-PCR arrays. They 
found that 20 microRNAs were significantly downregulated following 
exposure to propofol when compared to vehicle-treated cells [45]. 
Of these 20 microRNAs, several were of interest based upon their 
established roles in either physiological or pathological processes. For 
example, the let-7 family has been shown to be highly expressed in the 
brain and is important in stem cell differentiation and apoptosis [81]. 
In addition, miRs 9 and 124 have been shown to play a role in neuronal 

differentiation [82].The target of greatest interest was miR-21 which is 
a well-established anti-apoptotic factor [83,84].

To confirm that miR-21 was playing a role in the propofol-induced 
neurotoxicity, miR-21 was artificially up-regulated and knocked down 
in the stem cell-derived neurons using lipofectamine and a miR-21 
mimic and antagomir, respectively. The results showed that miR-21 
overexpression attenuated the propofol-induced cell death while miR-
21 knockdown exacerbated the effects. There are many established 
upstream regulators of miR-21 including signal transducer and 
activator of transcription 3 (STAT3) [85-87]. All members of the STAT 
family translocate to the cell nucleus once activated by phosphorylation 
where they act as transcriptional activators [88,89]. STAT3 was first 
discovered in 1994 and is activated when phosphorylated at the 
Tyrosine 705 position [90,91]. Following propofol exposure, pSTAT3 
expression in the neurons was significantly reduced but was not altered 
following manipulation of miR-21 expression, suggesting that STAT3 
may be an important upstream regulator of miR-21 in propofol-
induced neurotoxicity [45].

miR-21 also has thousands of established and predicted targets. Of 
these targets, programmed cell death protein 4 (PDCD4), Sprouty 1 
and 2 and phosphatase and tensin homolog (PTEN) are, arguably, the 
most well studied [92]. There was no change in the expression of PTEN 
in hESC-derived neurons following propofol exposure, indicating that 
PTEN is not involved in this pathway. However, Sprouty 2 expression 
was significantly increased while the level of activated Akt, a serine/
threonine kinase that is involved in many cell survival pathways through 
inhibition of apoptotic processes [93,94], was reduced in the propofol-
treated hESC-derived neurons. Sprouty 2 knockdown in the hESC-
derived neurons using a small interfering RNA (siRNA)-mediated 
approach significantly attenuated the propofol-induced neuron death 
and the decrease in activated Akt expression. The authors concluded 
that Sprouty 2 is the direct target of miR-21 in the neurotoxicity and 
propofol induced toxicity in human stem cell-derived developing 
neurons possibly through a STAT3/miR-21/Sprouty 2/Akt dependent 
mechanism [45]. 

miR-34a: microRNA-34a (miR-34a) belongs to the miR-34 family 
of microRNAs comprising three processed microRNAs (miR-34 
a/b/c) that are encoded by two different genes. miR-34a is encoded by 
its own transcript, whereas miR-34b and miR-34c share a common 
primary transcript [95]. The hippocampus is an area of the brain 
involved in learning and memory and has been shown to be a key 
site of neurotoxicity following exposure to anesthetics in developing 
animals. In the hippocampus, p53 targets the miR-34 family and this 
family of microRNAs is essential for cortical brain development [96]. 
One recent publication indicates the important role of miR-34a in 
ketamine-induced hippocampal apoptosis and memory impairment 
through fibroblast growth factor receptor 1 (FGFR1). In this study, 
one-month old C57/BL6 mice received daily intraperitoneal injections 
of anesthesia (ketamine, 50 mg/kg) for 7 days. Ketamine induced 
apoptosis of neurons in region I of the hippocampus [cornusammonis 
(CA)1] and upregulated hippocampal miR-34a expression. Lentivirus-
mediated inhibition of miR-34a protected against ketamine-
induced neuroapoptosis and memory impairment. Luciferase assay 
demonstrated that FGFR1 was directly regulated by miR-34a in 
hippocampus and siRNA-induced FGFR1 down-regulation further 
exaggerated ketamine-induced neuroapoptosis in hippocampus [74]. 
These findings suggest an important role for miR-34a and FGFR1 in 
ketamine-induced neurotoxicity. 

miR-34c: microRNA-34c (miR-34c) also belongs to the miR-
34 family of microRNAs. miR-34chas been implicated to play a role 

Pri-miRNA
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Exportin 5

Pre-miRNA

Dicer

Mature miRNA + 
RISC Complex

Target mRNA 
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Translational 
RepressionOr
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Figure 1 : MicroRNA (miRNA) biogenesis and mechanisms of action. 
miRNAs are transcribed in one or multiple hairpin structures in the nucleus by 
RNA polymerase II as large primary transcripts (pri-miRNAs). The pri-miRNAs 
are cleaved in the nucleus into shorter single hairpin loop called precursor 
miRNAs (re-miRNAs) by the enzyme Drosha. The pre-miRNAs are exported 
out into the cytoplasm by Exportin 5.  Once in the cytoplasm, the pre-miRNAs 
are further processed by the enzyme Dicer which removes the hairpin loop 
and forms the mature double-stranded miRNA.  The two strands then unwind 
and incorporate into the RNA-Induced Silencing Complex (RISC), resulting in 
the mRNA cleavage or translational repression followed by downregulation of 
protein expression.
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Anesthetic Model MicroRNA Main Findings Reference 

Propofol Human embryonic stem 
cell-derived neurons miR-21

The expression of miR-21 was downregulated following exposure to 
6 hours of 20 µg/mL propofol. Overexpression of miR-21 attenuated 
the propofol-induced cell death. The toxicity occurred through a 
STAT3/miR-21/Sprouty 2/Akt-dependent mechanism.

Twaroski, et al. [45] 

 

Ketamine Neonatal mice miR-34c

miR-34c was upregulated in the hippocampus of neonatal mice 
exposed to ketamine and downregulation of miR-34c attenuated 
the ketamine-induced neuronal cell death and cognitive impairment 
observed in the animals.

Cao, et al. [72] 

Ketamine Neonatal mice miR-124

miR-124 was upregulated in the hippocampus of neonatal 
mice exposed to ketamine and knockdown of miR-124 reduced 
ketamine-induced apoptosis in hippocampal CA1 neurons in 
vitro and activated the PKC-ERK pathway. miR-124 knockdown 
improved memory performance of mice treated with ketamine.

Xu, et al. [73]

Ketamine One-month old C57/BL6 
mice miR-34a

Exposure to 50 mg/kg ketamine for 7 days induced apoptosis in 
hippocampal CA1 neurons and upregulated hippocampal miR-
34a. Inhibition of miR-34a protected against anesthesia-induced 
neuroapoptosis and memory impairment while knockdown of its 
target, FGFR1 exacerbated the toxicity.

Jiang, et al. [74]

 

Ketamine One-month old Sprague-
Dawley rats miR-137

Exposure to 75 mg/kg ketamine for 3 days induced apoptosis 
in hippocampal CA1 neurons, downregulation of miR-137 in the 
hippocampus, and long-term memory impairment. Overexpression 
of miR-137 protected against hippocampal neurodegeneration and 
memory loss. 

Huang, et al. [75]

Table 2: Studies depicting a role of microRNAs in anesthetic-induced developmental neurotoxicity

in Alzheimer’s disease (AD) [97,98]. The expression level of miR-
34c was increased in both cellular and plasma components of AD 
patients’circulating blood samples compared to normal age-matched 
controls. Overexpression of miR-34c in cultures of human embryonic 
kidney cells (HEK 293) repressed the expression of targets such as 
Bcl2, SIRT1, Psen1, and Onecut2 that are involved in cell survival 
and oxidative defense pathways [98], suggesting that increased miR-
34c may be one of many factors contributing to an overall systemic 
weakening of stress defense mechanisms and cell survival in AD 
patients. 

Zhang and colleagues found that miR-34c was upregulated in the 
hippocampus of neonatal mice exposed to ketamine.They also showed 
that downregulation of miR-34c could attenuate the ketamine-induced 
neuronal cell death and cognitive impairment observed in the animals.
Knocking down miR-34c activated the protein kinase C (PKC)/
extracellular-signal regulated kinase (ERK) pathway, upregulated 
antiapoptotic protein BCL2, and ameliorated ketamine-induced 
apoptosis in the hippocampus. Cognitive examination with the Morris 
water maze test showed that ketamine-induced memory impairment 
was significantly improved in the animals by miR-34c down regulation 
[72]. Thus, miR-34c is appears to be important in regulating ketamine-
induced developmental neurotoxicity in the hippocampus.

miR-124: MicroRNA-124 (miR-124) is the most abundant 
microRNA expressed in the vertebrate central nervous system (CNS). 
miR-124 is expressed in neurons but not astrocytes and the levels of 
miR-124 increase over time in the developing CNS.miR-124 is involved 
in neuronal maturation and differentiation and downregulation of 
miR-124 has been linked to apoptosis [99]. miR-124 was also required 
for hippocampal axogenesis and retinal cone survival through 
Lhx2 suppression [100,101] and has been shown to induce neurite 
elongation by indirectly targeting Akt [102]. Xu et al. reported that 
miR-124 was upregulated in the hippocampus of neonatal mice 
exposed to high doses of ketamine. They found that lentivirus-mediated 
knockdown of miR-124 reduced ketamine-induced apoptosis in 
hippocampal CA1 neurons in vitro and upregulated the α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 
phosphorylation and activated PKC-ERK pathway [103]. Morris water 
maze test demonstrated that miR-124 knockdown improved memory 
performance of mice treated with ketamine, indicating that inhibiting 
miR-124 may provide a molecular target to attenuate the neurotoxicity.

miR-137: MicroRNA-137 (miR-137) has been shown to regulate 
neuronal maturation and dendritic morphogenesis during development 
[104]. Dysregulation of miR-137 expression may be associated with 
the pathogenesis and develop ment of Alzheimer’s disease [105]. 
Huang et al. showed that upregulation of miR-137 protected against 
ketamine-induced hippocampal neurodegeneration in young rats [75]. 
In this study, 1 month old-Sprague-Dawley rats were systemically 
administrated ketamine (75 mg/kg) once per day for 3 days. Ketamine 
treatment resulted in neuroapoptosis in the hippocampal CA1 
region, down-regulation of miR-137 in the hippocampus, and long-
term memory dysfunction. Con versely, overexpression of miR-137 
protected the brain against ketamine-induced neuroapoptosis and 
memory loss [75].

Conclusions and Future Directions
Mounting evidence from animal, epidemiology, and human 

stem cell-derived neuron models have shown that anesthetics can 
induce developmental neurotoxicity. The mechanisms governing 
the neurotoxicity are likely extremely complex and involve many 
converging or diverging pathways. Three recent studies from different 
groups began to clarify the role of microRNAs in anesthetic-induced 
developmental neurotoxicity using different models. These studies 
depicted altered profiles of microRNAs in developing human neurons 
and neonatal rodent brains in response to administration of the 
intravenous anesthetic drugs propofol or ketamine. Specifically, 
propofol downregulated miR-21 in stem cell-derived human neurons 
while ketamine upregulated miR-34a, miR-34c, and miR-124, 
and downregulated miR-137 in the mouse and rat hippocampus, 
respectively. Upregulation of miR-21 and miR-137 or down regulation 
of miR-34a, miR-34c, and miR-124 attenuated the neurotoxicity 
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of microRNA target arrays would allow for the assessment of changes 
in the expression of many predicted and validated targets of individual 
microRNAs of interest following exposure to anesthetics.

Taken together, the most recent studies suggest a novel microRNA-
related mechanism by which propofol and ketamine, widely used 
anesthetic agents, induce cell death in developing human neurons 
and animal models, implicating an important role for microRNAs 
in anesthetic-induced neurotoxicity and further expanding the 
understanding of how anesthetic agents induce neuronal toxicity. 
Nevertheless, detailed mechanisms are still poorly understood. 
Millions of children are exposed to anesthetic agents every year 
and many of those procedures are unavoidable. Understanding the 
mechanisms by which anesthetics induce neurotoxicity is critical in 
order to prevent adverse neurological outcomes following anesthetic 
exposure in the developing brain. The microRNA findings might lead 
to the development of novel protective approaches aimed at mitigating 
the neurotoxic effects of anesthetics in young children.
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