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Abstract

Among many purification processes, pervaporation is one of the promising technologies which is an
indispensable component for chemical separations with low energy consumption, minimum contamination and ability
to break up azeotropic mixtures. The key success of pervaporation process is dependent on the membrane features
(chemical components and morphology). Application of membranes surveyed in three categories included organic
solvent dehydration, removal of organics from solvent and separation of organic solvents. This article review
discusses different types of pervaporation membranes from the perspective of membrane fabrication and materials
in biofuel products.

Keywords: Pervaporation; Liquid mixture; separation technology;
Diffusion

Introduction
Pervaporation (PV) process is a process for liquid mixture

separation in a liquid phase. This process is able to separate different
components from mixtures such as water/organic, organic/water and
organic/organic mixtures. Pervaporation process works by placing a
liquid mixture to be separated (feed) in contact with one side of a
membrane. Across the membrane, the chemical potential gradient
works as the driving force for the mass transport of the materials. Also,
using vacuum pump or an inert purge (normally air or steam) on the
permeate side can help to maintain of a suitable permeate vapor
pressure. Usually the kept pressure is lower than the partial pressure of
the feed liquid. Finally, the permeated product (permeate) can be
removed from the other side with low pressure vapor (Figure 1). In
terms of the application or nature of the experiment, the permeate
vapor may be collected after condensation or released if desired.

Basically, hydrophilic and hydrophobic membranes apply to
separate the aqueous solutions and organic solvents from water
mixtures, respectively [1]. PV separation technology has superiority to
other separation technologies due to the separation mechanism which
is based on the difference in sorption and diffusion properties of the
feed substances as well as perm-selectivity of the membrane. This
mechanism is not dependent on the relative volatility of components
[2,3].

Pervaporation survives the challenge of phase change by two
aspects. First, pervaporation uses even with the minor components
(usually less than 10 wt.%) of the liquid solutions, and second,
pervaporation applies the most selective membranes. An efficient
membrane need to the suitable membrane materials which can
prominent efficiency of performance in the PV performance. Since the
minor feed components consume the latent heat, therefore PV
techniques reduce energy during the process.

Figure 1: Schematic Diagram of pervaporation process.

The second feature generally allows pervaporation the most efficient
liquid-separating technology. Take the separation of isopropanol/water
mixtures for example, if water content in the feed stream is 10 wt. %,
the maximum single plate separation factor (isopropanol to water) in
the fractional distillation is about 2. However, a pervaporation
membrane can normally offer a one-through separation factor (water
over isopropanol) of 2000–10,000 [4-6]. Furthermore, combination of
these two features ranks pervaporation the most cost-effective liquid
separation technology [7]. In addition, pervaporation also
demonstrates incomparable advantages in separating heat sensitive,
close-boiling, and azeotropic mixtures [8-10] due to its mild operating
conditions, no emission to the environment, and no involvement of
additional species into the feed stream. Most of the membrane
materials used in PV techniques are usable in laboratory scale, but not
in industrial applications. Thus, there is a need to survey more
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membrane materials possibilities which is important in order to
overcome drawbacks in current membranes.

Application of Pervaporation
Pervaporation technique as a separation process for liquid mixtures

is considered to be an economic, safe and environmental friendly
technology in comparison to the other conventional energy intensive
technologies such as extraction or azeotropic distillation. Since PV is
also well-suited for the treatment of volatile organic compounds, hence
termed often as a ‘clean technology’. PV method categorize into the
three different types involves dehydration of aqueous–organic solution
[11], removal of volatile organic compounds from aqueous mixture
[12] and separation of organic–organic solvent mixtures [13].
Currently, the fractional and azeotropic distillations have been
investigated and were used to separate and concentrate alcohol/water
mixture. Nowadays, these two processes are still facing suffer from
high operating costs and low product yield due to their need to
entertainers, while pervaporation technique shows good advantages
such as low cost ,easy operation and no need to performer [14].
Potential of the industrial utility of this approach attracts for
researchers to study the separation of azeotropic solution,
pharmaceutical waste, isomeric and heat-sensitive liquid mixtures [15].
The separation performance of a membrane is characterized by two
parameters includes flux and selectivity. Flux is the permeation rate of
the feed components through unit area of membrane per unit time and
measure in terms on kg m-2 h-1 or g cm-2 s-1 [16,17].

Organic solvent dehydration
To dehydrate water from the organic liquids or vapor mixtures,

hydrophilic polymers as glassy polymers are suitable choices. Their
glassy properties provide a good condition to make water-selective
membranes which use for solvent dehydrating. Polyacetylene
derivatives as samples of glassy polymers, are favourably permeable for
organic compounds as compare to water [2,18,19]. The hydrophilicity
property is due to the presence of the polar groups in the polymer
chain that are able to interact with water molecules. Dehydration of
organic solvents (e.g., alcohols, ethers, acids and ketones) is the most
important applications of pervaporation membranes [4,20-23]. The
importance of this process is related to the removal of water from an
alcoholic compounds which are used as biofuels that extracted from a
fermentation process.

Removal of organics from solutions
Separation of organic compounds from water is an important

process for biofuels recovery which are produced during the
fermentation process. For instance, the recovery of biofuels using PV
process carry out from a solution of acetone/butanol/ethanol solution
which produced by a fermenter. This process requires to a hydrophobic
membrane material. Proper of the membrane materials can overcome
to environmental and economic challenges. Mostly, rubbery polymer
membranes are appropriate for the selective removal of organic
compounds from water. However, researchers have found different
kinds of membrane materials to separate various organic solvents from
their aqueous solutions towards of energy efficient and economic.
While among various types of membrane materials,
polydimethylsiloxane (PDMS) has better results in terms of the flux
and selectivity. Moreover, rubbery polymer membranes are more
favorable for the selective removal of the organic compounds from
water.

Separation of organic solvents
Three kinds of mixtures can be distinguished for the mixture of two

organic liquids or vapors polar/apolar, polar/polar and apolar/apolar
mixtures. For the removal of the polar component from polar/apolar
mixture, polymers with polar groups should be chosen and for the
removal of the apolar component completely apolar polymers are
favorable. The polar/polar and apolar/apolar mixtures are very difficult
to separate, especially when the two components have similar
molecular sizes. In principle, all kinds of polymers can be used for the
separation of both mixtures (polar/polar). The separation process
performance on the base of differences in molecular size and shape of
the mixtures. In separation of organic mixtures the temperature and
pressure have more influence in the rate of transfer and selectivity of
the components. However, the temperature will more effect on the
organic tertiary mixtures (ABE) in comparison to the binary mixtures
[24].

Recently, the ceramic and conducting polymers membranes have
been studied as the selective barriers in the PV process [25-27].
Ceramic membranes provide a very high performance. They also
contribute a high thermal and chemical stability to the separation
process. These membranes can be used for variety applications in order
to the separation organic compounds in the acidic or alkaline
conditions [28].

Morphology Classification of Membrane
Membranes used in the process of pervaporation possess porous or

non-porous structures. Membranes with or without pores in their
structure are called porous and non-porous membranes, respectively.
The schematic of various types of the membranes are shown in Figure
2. Difference of their pores size, shapes and distribution are the factors
to determine pervaporation efficiency and selectivity of the
membranes. In porous membranes, the permeation often carry out by
size selection or exclusion. In permeating through the pores by
diffusing process, such as separating water from organic solution using
PV, a significant amount of water permeates across the membrane.
Hence, a higher flux and lower selectivity are observed in the porous
membranes. The non-porous membranes function by first partitioning
the molecule and then under a concentration gradient allowing it to
diffuse through the solid material. So, in the non-porous membrane
the partition coefficient and diffusivity effect on the separation of
components, therefore, this type of membrane is used for PV processes
whit high selectivity.

Composite membranes, as shown in Figure 2, commonly contain a
thin dense surface coating layer above the microporous support layer
and the top layer regulate the selectivity of the membrane. It is notable
that the membrane materials are differ from the porous support layer
[29,30]. Efficiency of mixture separation is effected by the
physicochemical properties of polymeric membranes as well as
operating conditions. The physicochemical properties include
thickness, hydrophobicity, chemical compatibility and mechanical
strength, and operation conditions include temperature and
concentration gradient of the feed across the membrane.
Pervaporation membranes fall into two categories, the homogeneous
membranes, (Figures 2A, 2B and 2D), and the composite membrane,
(Figure 2C). In the last two decades, separation performance for
different binary mixtures has been studied, especially the effect of
homogeneous membrane thickness [31]. Diffusion process in
homogeneous membrane dominates the flux; a higher permeation
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resistance is provided by thicker membrane which decreases the flux
but the selectivity is nearly unaffected [4,32]. The composite membrane
has a higher permeation flux than homogeneous membranes. This is
due to the presence of a thinner homogeneous membrane which is
supported on a porous substrate. This makes the composite membrane
suitable for the industrial applications. Some studies relate the
separation performance in the presence of micropores in the matrix
membrane [33] or in the composite membrane’s dry layer which is
near the permeate side [34].

Figure 2: Schematic diagram of membrane morphology.

However, the existence of micropores or dry permeate layers in the
membrane is somewhat unclear. If this performance remains
unchanged with the membrane thickness, the factors that remain
unaffected must be studied. Pervaporation separation, especially with
thin membranes, might be effected by the feed-solution adsorption.
Thereafter, the following absorption may affect the membrane
performance, which would also effect on diffusion and evaporation in
the process [29]. In such cases, surface properties, such as
hydrophobicity and roughness, can play a crucial role of governing the
adsorption and consequent permeating components’ absorption.
Often, the thinner polymer membranes lack in mechanical stability,
which is more apparent when vacuum pressure is applied to the
permeate side [4,31,32,35]. In recent studies, this problem are
addressed by using composite membranes, which support a thin
selective layer by a mechanically stable layer [2,35,36]. The porous
polymers can be used as support layers for the composite membranes,
these substrates offer negligible resistances to mass transport [37,38].
Otherwise, the substrate resistance may lead to lower membrane
productivity and selectivity [39].

Porous polymers such as polysulfone (PSf) are used widely in the
ultra-filtration and nano-filtration [40,41], or polyvinyl alcohol (PVA),
often used in the PV separation of water/alcohol mixtures. PVA is a
hydrophilic polymer with a good chemical stability and low cost of
manufacturing [42,43]. Since PVA show a tendency to swell in aqueous
solution, therefore before use, it must be crosslinked. At the high
temperature or intense operation conditions, if the active skin layer
and the support layer underneath swell in an un-coordinated manner,
the interface experience a big stress [44,45]. It can pass a “critical
point” and the composite structure render disintegrated which make
the membrane useless. The ‘critical point’ depends on the two
neighboring materials’ interactions. For this reason, its structural
integrity must also be analyzed other than the factors of selectivity and
productivity of the composite membrane. Tailoring the substrate
structure achieve a high performance composite membrane.

Composite membranes, however, are not fault-free and have their
own limitations. Analysis of the mass transfer resistance showed that
the surface resistance of the crosslinked membrane was high for the
thin membranes. Statistical analysis showed that the flux was
significantly affected by the thickness of the PVA layer [37]. The
selectivity was shown to be affected by the surface properties after the
membrane crosslinking, especially when the membrane was thin. In
the membrane morphology types, a recent development introduced a
new composition membrane material which is called Mixed Matrix
Membrane (MMM) [46]. MMM, as shown in Figure 2D, contains
inter-penetrating polymer matrix and solid fillers, such as graphite,
zeolite, silica, carbon molecular sieves, carbon fullerene, cyclodextrin,
and metal oxide [46]. The selectivity of the MMMs is around 2000
which is more than twice of neat polymeric membrane. This makes
MMMs extremely suitable for breaking the azeotropes solution of
water/iso-propanol [47].

Effect of Fillers on MMMs
According to the studies regarding the effect of the inorganic fillers

on MMMs, some researcher reported a tradeoff between flux and
separation factor, while the others reported an improvement in both
flux and separation factor. Generally, the interfacial voids lead to lower
selectivity but higher permeability for water. The enhancements may
be attributed to the properties of fillers, their interfacial voids or the
polymer chains’ rigidification by the fillers. Likewise, increase in flux
can be attributed to the high hydrophilicity, high porosity and large
pore size of the fillers. The sieving effect of the fillers can be caused an
increase in the separation factor for water. The polymer chain-
rigidification by the fillers might to be a reason for an increase
separation factor as the phenomenon reduces permeability. The
opposite relationship among the separation factor and flux have
resolved by using the inorganic fillers with right pore sizes and good
polymer compatibility for a positive enhancement to separation
performance [48]. A Mixed-matrix membrane might be useful for
water pervaporation, as compared to the inorganic membranes.

Membranes are either hydrophilic or hydrophobic. Although most
membranes are hydrophilic or water perm-selective owing to smaller
molecular size of water, few membranes are hydrophobic or ethanol
perm-selective. Membranes are categorized to inorganic, polymeric
and composite membranes, based on the type of materials used for
membrane production. The hydrophilic membranes are used for the
industrial application through PV process in order to organic solvent
dehydration [49,50]. Due to hydrophilic characteristics of these
membranes, extraction of water with the flux and selectivity carry out
depends on the active layer in the structure and its mode of crosslinks.

Hydrophilic Membranes
Based on the materials of the membranes and morphology structure

of the composite, the hydrophilic membranes classify to inorganic,
polymeric and hybrid composite membranes. Hydrophilic membranes
are mostly used by two main membrane structures including mixed
matrix and composite membranes. Many researchers have focused on
the efficiency of mixed matrix and composite membranes, as well as
the type of materials which improve transfer rate and selectivity
parameters. The polymeric membranes are extensively studied because
of their low cost and high performance as compared to the inorganic
membranes. On the other hand, the inorganic membranes are excellent
in the thermal stability and mechanical integrity. The hybrid
membranes are a combination of the polymeric and the inorganic
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membranes in order to enhance the performance of the polymeric
membranes.

Polymeric membrane
Pervaporation dehydration membranes divide into two categories

on the base of their hydrophilicity groups. The highly hydrophilic
membranes are made by polyvinyl alcohol (PVA) or chitosan. These
materials are usually cross-linked to enhance their stability and reduce
their swelling in pervaporation feed conditions. The commercial PVA
membranes (originally made by GFT) possess high selectivity towards
water with reasonably high flux [51,52]. PVA based membranes,
however, are not stable with the high feed water content particularly in
the high temperature operational condition [50]. Higher feed water
content induces the significant swelling on the membranes and the
selectivity for water decreases drastically. Hence, the membrane must
be cross-linked.

In the membrane technology, there are two reasons for the polymer
cross-linking, first, to make the polymer insoluble in the feed mixture
and second, to reduce the degree of swelling of polymer for achieving a
good selectivity. There are different methods by which cross-linking
can be performed such as chemical reactions and heat treatments [53].

Commercially available polyimides such as P84®, Matrimid® and
Torlon® have also been studied recently for pervaporation dehydration
applications [18,54-56]. However, a long term performance of
polyimides membranes has revealed a possibility of the material
hydrolysis which has resulted deterioration of the separation
performance over time [57]. Although polybenzimidazole (PBI)
membrane possess the high thermal and chemical stability have been
applied for pervaporation dehydration, its flux is relatively low due to
the strong intermolecular interaction through the hydrogen bonding
[58,59]. In order to modify the performance of PBI membranes for the
commercial application, significant enhancement of its flux should be
done. Inorganic and nano-materials were using to remove this

drawback of the polymeric membranes. The materials which used in
the polymeric membranes are more economic materials than the
inorganic and nanomaterial membranes. Therefore, the cost of the
polymeric membrane is lower than the others. Recently, researchers
have decorated the polymeric membrane using oxidizing raw material
like graphite to graphene oxide which reduced the cost of these
membranes [60-63].

More recently, pervaporation process through the amorphous
perfluoro polymers [50] have been developed to dehydrate alcohols at
high temperature. The amorphous perfluoro polymers are co-polymers
of tetrafluoroethylene and 2,2,4-trifluoro-5-trifluorometoxy-1,3-
dioxole with the commercial name of HYFLON®AD. The Hyflon
membranes possess the excellent chemical resistance to dehydrate the
aprotic solvents such as N,N-dimethylacetamide [64]. The major
disadvantage of these membranes is relatively lower thermal stability
due to the Tg of Hyflon which is only 130ºC [65]. The other researches
effort to improve the separation performance.

Particularly flux with the approach of the polyelectrolytes [66,67]
and thin film composite (TFC) membranes [68]. The stability of the
polyelectrolytes with high amount of water is a major concern since
the ionic bonding between the positive and negative ion charges of the
polyelectrolytes maybe significantly weakened by the hydrogen
bonding between water and the polyelectrolyte molecules. In the ultra-
thin selective layer produced by the interfacial polymerization (IP), the
pervaporation flux is more than 1 kg/m2 h at 25ºC for dehydrating
alcohols [68].

This results may be is due to the grafting or proper filler which
improved the weakness of this types of polymers. The TFC membranes
produced from the IP of the polyfunctional amine and acyl chloride
may are not be suitable for very high temperature applications. It may
find niche applications where it occur a high flux at the moderate
temperature. A list of some polymeric membranes is shown in Table 1.

commercial membrane Feed compositions (wt%) Feed Temperature (°C) Total flux (Kg/m2h) β Ref.

P84 n-Butanol/water (95/5) 95 1.2 1000 [52]

Matrimid IPA/water (85/15) 80 1.8 132 [17]

Torlon IPA/water (85/15) 60 0.765 1944 [49]

PBI Ethylene glycol/water (64/36) 60 0.732 303 [53]

Polyimide (Ube) Ethanol/water (80/20) 100 0.127 (3.5 mol/m2 spa) 500 [74]

Hyflon/Cellulose ester Ethanol/water (80/20) 75 1.5 (4000 GPU) 300 [47]

Polyimide Ethanol/water (90/10) 25 1.75 600 [75]

Polyelectrolytes (simplex GKSS) Acetone/water (80/20) 70 2.15 60 [70]

PVA IPA/water (90/10) 80 1.2 750 [76]

polyelectrolytes Isopropanol/water (90/10) 50 1.18 1013 [69]

Table 1: Commercial polymeric Membrane.

The polymeric membranes show some unfavorable properties such
as swelling and low performance in the permeation or separation
factors, for using in the PV membranes. However, these weaknesses of
the polymeric membranes can be overcome by incorporating low

quantities of the specific inorganic components and nanomaterials as
modifier.

Research studies were reported the highest performance of PV
process when the organic compounds and nanomaterials were used.
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These materials have modified some essential properties such as high
permeation and low swelling in the polymeric membranes to achieve
to better separation factor. Some studied have stated different
advantages of the polymeric and inorganic membranes [7,69,70].

Inorganic membranes
The membranes which are made from materials such as ceramic,

carbon, silica, zeolite, various metal oxides (alumina, titania, zirconia)
and metals like palladium, silver and their alloys are known as
Inorganic membranes. Based on their structures, these membranes can
be categorized as porous inorganic membranes and dense (non-
porous) inorganic membranes [71-73]. In the first category, the
microporous inorganic membranes, including both of the amorphous
and crystalline membranes have two different symmetric and
asymmetric structures [74].

The separation of a mixture by inorganic membrane is achieved
based on the different molecular sizes of the feed mixture. Several
types of the inorganic membranes have been explored for dehydration
applications, including zeolite membranes [75], carbon [76,77], silica
[78] and graphene [79]. NaA zeolites and silica membranes have been
commercialized [7], while the other types of the inorganic membranes
are still at the research stage. A first industrial plant with NaA zeolites
was built in 2001 for ethanol dehydration by Mitsui Engineering and
Ship building Co. The inorganic membranes have some advantages
over the polymeric membrane as mentioned in Table 2.

The inorganic membranes possess high flux which are several times
of the polymeric membranes. Among the inorganic membranes, the

performance of NaA zeolite is still the best because of its high
hydrophilicity and a pore size of 0.41 Å [7]. Using the carbon
membranes prepared from the polymeric precursors have also been
attempted for the pervaproation dehydration applications with some
promising outcome. More recently, another type of carbon membrane,
graphene oxide, has been reported for vapor permeation with ultra-
high water permeability but with almost no permeation to the organic
vapor [80-82].

Inorganic Membranes Polymeric Membranes

Rigid structure of inorganic materials
resist to swelling materials,
expensive Process-ability, flexxibility and low cost.

Thermal and chemical stability
Thermal, chemical, and mechanical
stability

Molecular sieve effects High Selectivity

Table 2: Comparision of inorganic and polymeric membranes.

This is a highly interesting phenomenon and may have potential
applications for the pervaporation dehydration of the organic
mixtures. High costs of the inorganic membranes fabrication is a
serious problem for these types of membranes. Hence, it is more
efficient to use inorganic materials as a modifier not base membrane
materials. Table 3 has exhibited the separation performance of the
inorganic zeolitic membranes.

Membrane Material Feed & Concerntration Operation T°C Total flux (g/m2h) SF Membrane
Structure Ref

Zeolite NaA/carboseptube support 90wt%IPA 70 300 2000 Composite [80]

Zeolite NaA 70wt%EtOH 60 2100 2140 Composite [81]

Ceramic commercial membrane 95wt%IPA 70 2100 600 Tubular [82]

Pervap SMS® Silicamembrane 90wt%IPA 70 300 60 Tubular [78]

Table 3: The seperation performance of the zeolitic membranes.

Nanomaterials
Nanomaterials can be used as the best modifiers in membranes [63].

However they are not economical but if they use as fillers they will be
economical. Using some nanomaterials such as graphene oxide (GO)
can be reduced the cost of a membrane [83,84]. Many researchers are
trying to improve GO properties with decorating of the flaks of GO in
the PV process [63].

When nanomaterials are used as fillers they have two main
advantages, firstly, low quantity of nanomaterials will give the high
sufficient effects in the products, secondly, nanomaterial offer higher
selectivity and mostly more stability than the inorganic fillers.
Nanomaterials can easily enhance the hydrophilic polymeric or easily
change the unfavorable properties of the polymeric materials
[63,83,85].

Since the polymeric components are cheaper materials as the base-
membrane, therefore nanomaterials are better use as modifiers.
Although the organic filler improve the hydrophilicity of a membrane,
nano filler get similar result with only one third of the amount of the

organic filler and better performance the separation factors. Recent
membrane fabrication techniques focus on GO which has considerable
results on the performance in dehydration of biofuels [84,86].

Functionalizing and improving the nanomaterials can inspire a
novel idea which can change the world of pervaporation by using the
new materials for the membrane fabrications. Though researchers
attempts to prepare the various membranes in order to dehydration
process of the organic solutions and organic mixtures, they could not
fabricate an economical membrane which can exhibit the equal
performances in the separation and permeation simultaneously. Table
4 is shown a list of the membranes with GO.

Comparison of PV with the Fractional Distillation
Pervaporation (PV) separation is an economical and a simple

method for the separation of many organic/organic mixtures such as
azeotropic solutions. It is a competitive method compared to other
techniques. Unlike the fractional distillation, the separation
mechanism in PV is not based on the components’ relative volatility.

Citation: Manshad S, Nawawi MGM, Sazegar MR, Hassan HB, Alamaria AM (2016) Membranes with Favorable Chemical Materials for
Pervaporation Process: A Review. J Membr Sci Technol 6: 164. doi:10.4172/2155-9589.1000164

Page 5 of 9

J Membr Sci Technol, an open access journal
ISSN:2155-9589

Volume 6 • Issue 4 • 1000164



Membrane
Feed concentration Water
Content (%) Temperature (°C)

Permeation flux
(kgm-2h-1) Seperation factor Ref.

GOPASA/mPAN 10 30 2.54 2241 [86]

GOPASA/mPAN 10 70 4.34 1791 [86]

((PEI-modified GO)/PAA)1/PVA/GA 5 50 156 98.1 [87]

((PEI-modified GO)/PAA)1/PVA/GA 5 40 196 96.9 [87]

PAN/PVA-GO 50 40 27 12.9 [88]

GO/AAO 10 50 3100 230 [89]

GO/AAO 4.7 50 1300 440 [89]

Table 4: List of membrane ingredient GO.

In fact, it is based on the difference in the sorption and diffusion
properties of the feed substances as well as the perm-selectivity of the
membrane. The main advantage of PV over distillation is that PV is
independent of the relative volatility of components and therefore, it is
not limited by the vapor–liquid equilibrium.

Also, since the compounds which pass through the nonporous
membrane are evaporated [87,88], it makes a more energy efficient
method for PV as compared to the conventional distillation. In
addition, pervaporation process do not show any negative influences
on the micro-organisms int he fermentation broth [3,88].

Future Possibilities of PV Membrane Material
Pervaporation processes can be applied for future applications in

the different fields of petrochemical industry [89,90], petroleum
refinery, environment refinery, food and dairy industry, natural gas
refinery and pharmaceutical aspects like process design and product
control. Process design give better control of process over PV
membrane to improve the quantity of the products [91-96].

Moreover, all kinds of membranes operate to make the satisfactory
processes strategy for separating the polar or apolar solutions which
decrease the equipment size [97-102], increase the safety, and reduce
the product costs.

Pervaporation process is a suitable method for extraction of the
organic-aqueous solution and organic-organic mixture due to their
properties. Some of these mixtures have poor solubility in water such
as toluene, benzene, ethylbenzene, and some of the other components
have high solubility in water like methanol, ethanol and isopropyl
alcohol [103-108]. Although fractional distillation is also a good
method to extract organics such as alcohols which are highly miscible
with water, the high process costs and high energy consumption are
the major problems for this process. PV membrane is a preferable
technique to remove these problems from industrials by breaking
azeotropic barriers and/or separating water in low concentration of
10% wt.

Conclusion
Pervaporation can compete with well-established separation

technologies for biofuel or alcohol separations due to distinctive
advantages like economy, safety and ecofriendly nature. Overall, even
though there might be some restrictions to overcome, the development

of suitable membranes keeping in mind the structure property
relationships of the membrane materials, membrane formation
techniques and membrane modules. The full potential of
pervaporation can be used in the area of alcoholic/water mixture
separation. Suitable membrane materials remains a challenge for PV
process from both economical and industrial application sides due to
the most of the available membranes are experimented in the
laboratory scale and not at industrial level. In this review paper, the
different types of membranes are reviewed, as well as the challenges
they face to perform better in terms of the selectivity and flux
simultaneously and have long life membranes.
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