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Introduction
Hepatocellular carcinoma is considered one of the most lethal 

cancers in the world, ranking as fifth most prevalent cancer and third 
leading cause of cancer related death. In areas like Japan and Central 
Europe, HCC prevalence is associated with Hepatitis C Virus (HCV) 
infection. In Western countries, there is an increased incidence of HCC 
due to the rise of Hepatitis B Virus (HBV) infections, HCV infections 
and chronic alcohol use [1,2]. Western’s HCC usually developed in 
cirrhotic liver while over 50% of Asian countries developed in non-
cirrhotic liver. More recent studies suggest metabolic syndrome, such as 
type II diabetes and obesity, is an additional risk factor for development 
of HCC [1,2]. 

HCC staging have been established based on the presence of 
several prognostic factors including tumour size, number of the lesions, 
patient’s health status, liver remnant function, among others [3-5]. 
Despite HCC´s high prevalence, the therapeutic options and prognosis 
of the patients mainly depends on the stage on the presentation. The 
earlier stages are treated with resection and/or liver transplantation. 
However, the tumour recurrence rate has been reported up to 70% 
at five years after resection [6]. Intermediate stages are treated with 
locoregional therapies including radiofrequency ablation (RFA), 
microwave ablation (MWA) or transarterial chemoembolism (TACE). 
In those patients with advanced, large non-resectable lesions, Sorafenib 
is the standard of care. For terminal stage patients, only palliative care 
is recommended. Unfortunately, there is no approved second line 
treatment for prevention or recurrence of HCC which empathizes the 
importance of additional research in this field [7].

The Cancer Stem Cell (CSC) model is growing as a possible 
alternative hypothesis in tumorigenesis. This hypothesis proposes 
that a small population of cells is responsible for tumour development 
and growth. It also propounds to explain tumour metastasis and 
chemotherapy resistance [2,7]. In recent years, numerous signaling 
pathways such as RAS/RAF/MAPK, Wnt-β-catenin, EGFR, insulin-
like growth factor receptor, AKT-mTOR, Notch and Hedgehog, among 
others; have been implicated in hepatocarcinogenesis. Because of that, 

some of their components could represent important molecular targets 
for therapy in HCC.

The RAS/RAF/MAPK pathway is typically activated in HCC as a 
result of increased signaling induced from upstream growth factors 
and due to inactivation of tumor suppressor genes [1,7]. As previously 
mentioned, Sorafenib, which significantly inhibit RAS/RAF/MAPK 
pathway, is the only approved drug that have shown to decrease tumor 
progression, and improve survival in patients with advanced HCC [7]. 
Because of the heterogeneity of these cancers and the complex process 
involved in HCC carcinogenesis, previously published data from 
preclinical studies suggest that combination therapy could be essential 
in HCC treatment. There are numerous combination therapy studies 
for advanced stage HCC ongoing in phases 1-3 and several reagents 
are being tested targeting novel signaling cascades such as Wnt-β-
catenin and Notch [7-9]. Our group and others have focused on ways of 
producing inhibition of liver cancer stem cells (LCSC) and differences 
in resistance patterns with non-LCSC lines [10-13].

Exploring LCSCs and ways to target them could shine a new light in 
tumourgenesis and new treatment options. This review focuses on the 
significance and current understanding of LCSCs and the rationale for 
targeting these cells in HCC treatment. 

Stem Cell Hypothesis in Cancer
There are two major models that have been proposed to define 

malignant solid tumours: the stochastic and the hierarchical models. 
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The stochastic model, also known as clonal evolution model, suggests 
that undifferentiated cancer cells with the most growth advantages 
would comprise majority of the tumour. This theory also meant a 
homogenous cell across the whole mass and that each cell has similar 
growth potential. On the other hand, the hierarchical model, or the 
CSC hypothesis, suggests the existence of a subpopulation of cells that 
can maintain or expand the tumour putting these stem cells at the apex 
of the cell differentiation hierarchy [2]. The stem cells are characterized 
by their capacity of self-renewal, differentiation, and tumourgenicity. 
These cells are also regarded to be more resistant to chemotherapy and 
radiotherapy [14-16]. 

A cancer stem cell can be a differentiated cell that acquires self-
renewal abilities despite the parallel observed between a stem cell and 
CSC [16]. Interestingly, the two models are not mutually exclusive as 
there are evidences supporting both. Homogenous tumours can be 
found and it has been shown that CSC can expand via clonal evolution 
methods [16]. A CSC can go on clonal evolution to produce a more 
aggressive second generation CSC to replace or metastasize to other 
locations. It is reported that serial transplantation of CSC can select for 
a more aggressive generation [16,17]. 

The existence of CSC was first proposed decades ago by John 
Dick et al. who were the first to demonstrate the role of stem cells in 
hematological malignancies [18]. Since then substantial evidence has 
emerged to support tumor heterogeneity and cellular hierarchy within 
a tumor in solid cancers. Recently, studies have provided convincing 
evidence that these cells do exist in solid tumors of many types 
including, brain, breast, colorectal, hepatobiliary, pancreas and prostate 
cancers [19-24].

Normal stem cells (NSC) are believed to reside in a “stem cell niche” 
which plays a crucial role in some of their typical characteristics such 
as pluripotency and self-renewal [25]. Recent studies suggest that CSC 
also rely on a vascularized complex, which control their differentiation 
and proliferation [16,26]. This liver tumor microenvironment is a 
complex mixture of tumoral cells within the extracellular matrix (ECM), 
combined with an intricate mix of stromal cells. Together, these elements 
contribute to the carcinogenic process by sustaining proliferative 
signaling, evading growth suppressors, resisting cell death, inducing 
angiogenesis, activating invasion and metastasis, reprogramming energy 
metabolism, and eluding immune destruction [27]. 

The CSC hypothesis is promising due to how well it fits with the 
clinical presentation of HCC. It explains the tumour’s heterogeneity 
within or between masses and its mechanism of relapse and metastasis. 
It can also explain the poor outcome of current therapy [24].

Characterization of Liver Cancer Stem Cells 
Tumour markers have been a mainstay of identifying cancer cells 

in all tissues. The expression of markers was first studied in leukemia 
stem cells. In solid tumours, it is a topic under heavy research. 
Because some of these markers can be found in normal tissues, it is 
crucial to find more specific markers or use several of them to identify 
LCSCs. Screenings on several LCSC markers demonstrated a wide 
heterogeneity of expression profile of the markers in HCC’s CSC. 
No consistent expression patterns of LCSC stem markers between or 
within cell lines were found, suggesting a strong heterogeneity between 
HCC and perhaps their origins. Therefore, a universal LCSC for HCC is 
most likely non-existent due to this heterogeneity. To date, it has been 
reported that LCSCs can be recognised by multiple cell surface antigens 
including CD133, CD90, CD44, CD24, and the epithelial cell adhesion 
molecule (EpCAM) [28-32] (Table 1). 

Due to the heterogeneity of LCSC markers other features have been 
identified to help characterize these cells. Initiation studies have been 
performed using small number of LCSCs to produce aggressive HCC 
in vivo [13]. Resistance to therapy studies have been used to recognize 
CSC that are usually more resistant than non-CSC counterparts. 
Genetic studies to demonstrate usual genes and signaling pathways 
known to be associated with survival and maintenance of CSCs have 
been performed to better characterize these cells [1,2,9].

EpCAM (CD326)
EpCAM is a surface antigen that is normally expressed in human 

epithelial tissues, progenitor, and stem cells. In regards to the liver, it 
is expressed in embryonic hepatoblasts, bile duct epithelium, hepatic 
stem cells, premalignant tissues, and HCC. It is not expressed in normal 
non fetal hepatocytes therefore it is considered a prospective marker for 
premalignant tissues or HCC [28]. EpCAM is a weak homotypic cell 
adhesion molecule. Its oncogenic potential comes from its intracellular 
domain EpICD where EpCAM is cleaved. EpICD can then bind 
with proteins such as β-catenin, Lef, and FHL2 and upregulate the 
transcription of oncogenes [28].

EpCAM has been identified to be associated with Wnt/β-catenin 
pathway, and several studies have stablished that inhibition of Wnt/β-
catenin pathway leads to a decrease expression of EpCAM [33-36]. 
The signalling between EpCAM and Wnt/β-catenin pathway is not 
completely understood [33] but there is evidence that microRNA-181a 
plays a role in this missing link [35]. 

EpCAM is best used alongside other more prominent markers 

Marker Expression in healthy tissue Expression on cancer type Malignant Properties in HCC
CD19 B lymphocytes B cell malignancies
CD20 B lymphocytes Melanoma

CD24 B lymphocytes, neuroblasts Pancreas, lung and liver cancer, negative on breast cancer Metastasis
Highly associated with Wnt/β-catenin pathway

CD34 Endothelial and hematopoietic progenitors Hematopoietic malignancies
CD38 Multiple stages of B and T cells Negative on AML

CD44 Broadly on many tissues Liver, colorectal, breast, pancreas, head and neck cancers Metastasis
Highly associated with Wnt/β-catenin pathway

CD90 T cells, neurons Liver and colorectal cancer Metastasis 

CD133 Proliferative cells in multiple organs Liver, colorectal, lung, liver and brain cancer Proliferation
Highly associated with Wnt/ β-catenin pathway

EpCAM Panepithelial marker Liver, colorectal and pancreatic cancer Metastasis
Highly associated with Wnt/β-catenin pathway

Adapted from Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nature Medicine 17: 313-319.
Table 1: Surface markers used for the identification of cancer stem cells.
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like alpha-fetoprotein (AFP) and is commonly present with CD133. 
EpCAM+AFP+ HCCs were found to have poor prognosis with high 
metastasis and stem cell associated gene expressions. Shan et al. proved 
an increase in microvessel density and VEGF level in EpCAM+ AFP+ 
HCC [37]. 

CD133 (Prominin 1)
CD133, a 5-transmembrane glycoprotein, is widely used as a 

cancer marker in many tissues such as brain, kidney, bone marrow, 
liver, kidney, and pancreas. It is found in fetal liver cells, bone marrow, 
and adult blood cells [29]. CD133+ HCC characterizes by having high 
proliferative and tumorigenic potentials as well as lower levels of mature 
hepatocyte markers [30]. CD133+ HCCs from Huh7, HepG2, and PLC 
cell lines exhibited cancer and stem cell like properties in vivo [38]. 

Ma et al. used a partial hepatectomy model in mice to study the 
role of stem cells in liver regeneration. They found that CD133 was 
significantly upregulated in association with the liver regeneration 
process [38]. In subsequent studies, CD133+ cells displayed greater 
tumourgenicity in immunodeficient mice, higher colony forming 
efficiency and proliferation ability, and capacity to differentiate into 
non-hepatocyte-like lineages, indicative of their multipotency [30,39]. 
Further studies demonstrated that these cells were more resistant to 
conventional cytotoxic treatments than their CD133- counterparts [40]. 
This resistance may contribute to tumour metastases and relapse. 

CD44
CD44 is a cell surface glycoprotein interacting with extracellular 

structures such as hyaluronic acid for cell-cell contact, cell adhesion 
and migration. It undergoes alternative splicing resulting in several 
isoforms participating in different cellular functions, including 
lymphocyte recirculation, homing, and T-lymphocyte activation. It 
also interacts with Wnt/β-catenin pathway inducing cell proliferation, 
migration, and apoptosis [41]. Similar to the other markers, it can be 
found in many malignant cancers, for instance, gallbladder carcinoma, 
renal cell carcinoma, colorectal cancer, and HCC [31,41-44]. CD44+ 
tumour cells are related with metastasis and in LCSCs, they are found to 
be associated with tumor invasiveness [45]. CD44 has been increasingly 
implicated as a marker for tumor-initiating stem cells and associated 
with poor prognosis in HCC and other solid tumours [31,32,41,44-46].

CD90 (Thy-1)
CD90 is an N-glycosylated, glycophosphatidylinositol anchored cell 

surface protein used as a marker for several kinds of stem cells [11]. Its 
function is to regulate cell-cell and cell-matrix interactions in neuronal 
cells, fibroblasts, endothelial cells, thymocytes, among others. CD90 
is a promoter of melanoma and leukocytes migration and metastasis 
[11]. In the fetal liver, CD90 has been expressed in liver hematopoietic 
cells, suggesting its role in HCC as a marker of metastasis rather than 
inhibition [47,48]. 

CD24
CD24 is a cell adhesion protein also anchored to the cell membrane 

by glycosylphosphatidylinositol. It binds to P-selectin on endothelial 
cells and platelets, which has been associated with development of 
tumour metastasis [49,50]. In HCC cells, expression of CD24 has been 
correlated with accumulation of β-catenin leading to the activation of 
its oncogenic pathway [49]. 

Interestingly, CD24 plays a role in acquiring chronic HBV infection, 
a prominent cause of HCC. Li et al. identified the P170T/T CD24 

mutation is more prevalent in chronic HBV infected patients compared 
to patients without the infection. This marker is also linked with an 
earlier onset of HCC. In the same study, the authors demonstrated that 
P1527del allele, leading to a decrease in CD24 expression, is correlated 
with decrease in HBV infection [51]. 

Clinical Implications of Liver Cancer Stem Cells in 
Hepatocellular Carcinoma

HCC diagnosis is based on imaging studies supported by measuring 
serum AFP levels [52]. While these tools are effective for screening and 
diagnosis of HCC, their use for malignancy and recurrence detection 
is limited. It has been described that normal serum AFP levels 
postoperatively do not reflect total resection of HCC from the patient 
[53,54], and about 20% of HCC does not increase serum AFP levels. 
Additional markers such as GPC3, GGT II, AFU, TGF-β1, and TSGF 
may help improve accuracy but are not reliable by themselves [55]. 
This brings in the need to find additional markers for postoperative 
detection and assessment of patient’s prognosis. Using progenitor stem 
cells markers can be beneficial for these purposes. Moreover, cells with 
these markers which are link to other stem cell characteristics could be 
used as potential therapeutic targets. 

As previously mentioned, CD133 has been one of the major markers 
for poor prognosis found in HCC [30,38-40]. Patients undergoing 
resection for HCC with CD133+ lesions have shorter overall survival 
and higher recurrence rate compared to patients with CD133- tumors 
[56,57]. CD133 expression has been associated with the ability to survive 
in hypoxic and poor nutritional environment through autophagy [58]. 
There is also evidence that CD133 expression is correlated with poorer 
tumour response to Sorafenib [59].

CD90 expression in LCSC is indicated as a marker of metastasis 
[47,48], and described to play a role in enhancing the motility of 
EpCAM+ by TGF-β signalling pathway [60]. Some studies showed a 
correlation between the level of CD90 expression in LCSC and stages 
for liver disease progression [61]. Interestingly, CD90 seems to be 
upregulated in HBV infections triggered HCC and increased CD90 
expression is correlated with poor prognosis [62].

CD44 expression is associated with metastasis [24] and some CD44 
variant, such as CD44v6, are reported to interact with c-Met to sustain 
RAS signalling pathway for cell proliferation [63]. Its association with 
metastasis is related to its role in the epithelial-mesenchymal transition 
(EMT) [64-68], leading to loss of cell-cell adhesion and gain migratory 
with invasive properties. The expression of CD44 was found to be 
responsible for recurrence after local ablation therapy of HCC due to its 
association with EMT [68].

Cells co-expressing CD133 and CD90 with CD44 are more 
aggressive than those expressing CD133 or CD90 alone [2]. 
Interestingly, CD133+ CD44+ cells exhibit preferential expression of 
some stem cell associated genes (β-catenin and Bmi-1) and are more 
resistant to chemotherapeutic agents through up-regulation of ATP-
binding cassette (ABC) superfamily transporters. Zhu et al. compared 
CD133+CD44- cells with CD133+CD44+ HCC cells, and found that 
double positive cells are more tumorigenic and chemo resistant, and 
express a higher level of stemness-associated genes [69]. Further, it 
was recently published that CD133+CD44+ cells defined a subgroup of 
tumor cells that could be responsible for hematogenous metastasis of 
liver cancers [24].

Our group demonstrated high tumourgenicity and aggressiveness 
using CD133+, CD44+ and CD24+ LCSCs. We inoculated 2000 of these 
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LCSCs, and visible tumors were developed 4 to 6 weeks after injection 
in all mice [10]. Previous studies showed that using other non-LCSC 
lines such HuH7, millions of cells are needed to develop tumors in nude 
mice. The developed tumors showed pleomorphic cells growing with 
significant amount of mitosis, all features of poorly differentiated HCC. 
Moreover, our findings revealed that dual inhibition of PI3K/mTOR 
and RAS/RAF/MAPK signaling pathways is superior to monotherapy 
in non-LCSC (PLC, HEP3B and HuH7) and LCSC lines (CD133+, 
CD44+ and CD24+) [10]. 

Fan et al. proposed that LCSC markers found in blood can be an 
additional prognostic indicator for HCC prognosis. They detected 
CD45-CD90+CD44+ CSCs in HCC patients and described a high 
correlation between the presence of these circulating cells in blood 
and HCC recurrence. Patients with >0.01% circulating LCSCs have a 
22.7% 2-year recurrence free survival rate versus 64.2% in patients with 
<0.01% circulating LCSCs [70]. Similar poor prognosis was reported 
with circulating LCSC expressing EpCAM [71]. 

Recently, our group studied the expression of CD44 and/or CD133 as 
predictors of prognosis in patients undergoing transplantation for HCC. 
Using immunofluorescence, we found that CD133 and CD44 positivity is 
associated with increased occurrence of moderate to poorly differentiated 
HCC and elevated levels of AFP. These markers in combination with 
the presence of microvascular invasion (MVI) were independently 
correlated with poor overall survival and increased risk of recurrence 
after transplantation for HCC (data not published) (Figure 1).

These early results suggest that molecular characterization of these 
markers could eventually augment the anatomic staging of primary 
liver malignancies, although further studies are warranted to elucidate 
the association of LCSCs and tumor biology and their impact in HCC 
prognosis and treatment. 

LCSCs: Potential Molecular Targets for HCC Therapy?
The failed cytotoxic chemotherapy in HCC and the development 

of Sorafenib as standard of care for management of advanced non-
resectable lesions have significantly stimulated the understanding of 
the different cell signaling pathways involved in hepatocarcinogenesis. 
Focus on targeting CSCs should bring important and revolutionary 
advances in cancer therapeutics. As previously mentioned, LCSC 
markers are expressed erratically among HCCs and the effectiveness of 
targeting these cells could be largely variable. However, due to their role 
in tumour progression, recurrence, and metastasis it might be essential 
targeting these cells as part of HCC treatment. 

As CD133 being one of the major and well-studied marker for 
HCC, several potential therapeutic approaches have been proposed for 
targeting LCSC with CD133 expression. Smith et al. tested a murine 
anti-human CD133 antibody conjugated to monomethyl auristatin F, a 
cytotoxic drug, and significantly inhibited the growth of Hep3B HCC 
cells [72]. Zhang et al. used an inhibitory transcription factor named 
Ikaros to repress the expression of CD133 through direct binding to 
CD133 P1 promoter leading to a decreased in tumourgenicity of LCSC 

Figure 1: Illustration of liver cancer stem cells immunofluorescence microscopy and H&E staining of explanted livers. A. Sixty year old male diagnosed with a solitary 
stage II HCC (CD44+), AFP level 4.8 mg/dl, recurrence-free survival of 128 months. H&E staining demonstrate a moderate to poorly differentiated tumor. B. Forty-
eight year old male diagnosed with multiple stage II HCC (CD133+), AFP level 2.5 mg/dl recurrence-free survival of 93 months. H&E staining demonstrate a well-
differentiated tumor. C. Fifty five year old male diagnosed with a solitary stage I HCC (CD44+/CD133+), AFP level 3.6 mg/dl, recurrence-free survival of 39 months. H&E 
staining demonstrate a moderate to poorly differentiated tumor. Expression of stem cell markers was reported as single CD44 positive, CD133 positive or dual pattern 
of immunofluorescence positivity when expression of both markers was identified in the same cell. Magnified are represents tumor cells with positive LCSC markers. 
H&E magnification of 20X.
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in HCC [73]. Bach et al. used an oncolytic measles virus to target 
CD133+ LCSC showing an antitumoral effect on the HCC growing 
subcutaneously or multifocally in the peritoneal cavity of severe 
combined immunodeficient mice [74].

In another study, Ma et al. documented that activation of the Akt/
PKB and Bcl-2 pathway contributes to the chemoresistance observed in 
CD133+ HCC cells [40]. Interestingly, treatment with an Akt 1 inhibitor 
sensitized CD133+ HCC cells to conventional anti-cancer treatment 
with drugs such as 5-FU [40]. Other authors reported that treating 
CD90+ cells with anti-human CD44 antibody induced cell apoptosis 
in a dose-dependent manner in immunodeficient mice, suppressing 
tumor nodule formation in liver and metastatic lesions in lung [48,75].

Current strategies are focused on targeting rapidly proliferating 
tumor cells and also likely the differentiated tumor cells. Treatment 
seem to be initially successful, but often fail to provide a long lasting 
effect probably because these are very heterogeneous cancers with 
diverse cells with significant different sensitivities.

The RAS/RAF/MAPK pathway is one of the best studied signalling 
pathway and main target of Sorafenib. Chronic activation or mutations 
in this pathway leads tumour cell proliferation and tumour angiogenesis 
[76]. Looking at the same direction as Sorafenib, it would be beneficial 
to target other signalling pathways to co-inhibit along with the RAS/
RAF/MAPK. Our group have published that HCC cell lines, PLC, 
Hep3B and Huh7, have different sensitivities to Sorafenib and PKI-587, 
a dual PI3K/mTOR inhibitor. Interestingly, LCSC cell line showed at 
least moderate to severe resistance to these drugs in vitro. Our findings 
demonstrated that dual inhibition of PI3K/mTOR and RAS/RAF/
MAPK signaling pathways is superior to monotherapy in non-LCSC 
and LCSC lines (CD133+, CD44+ and CD24+) [10].

The Wnt/β-catenin pathway appears as another significant 
pathway to target because of its prevalence in HCC [77]. β-catenin is a 
transcriptional coactivator in the TCF/LEF family. It is normally bound 
to a destructive complex composed of Axin, Adenomatosis polyposis 
coli (APC), protein phosphatase 2A (PP2A0), glycogen synthase kinase 
3β (GSK3β), and casein kinase 1α (CK1α) leading to its ubiquitination. 
The activation of the pathway starts with the binding of Wnt protein 
binding to the Fizzled (Fzz) and LRP5/6 co-receptors. The binding 
activates Dishevelled (Dvl) leading to an inhibition of GSK-3β and 
breakdown of the destructive complex, freeing β-catenin. Accumulation 
of β-catenin in cytoplasm leads to localization to the nucleus, 
displacement of Groucho-HDAC co-repressors, and recruitment of 
LEF/TCF DNA binding factors. This chain of events subsequently leads 
to transcription of oncogenes such as c-myc, Survivin, and cyclin D1 
which promotes cell proliferation and inhibit apoptosis. More than 50% 
of HCC has an accumulation of β-catenin and more than 20% of HCCs 
have β-catenin related mutations [78]. 

Due to the importance of β-catenin pathway in CSC we initiated an 
in vitro model using FH535 to block Wnt/β-catenin pathway in LCSC 
(CD133+, CD44+, CD24+). We demonstrated significant inhibition of 
proliferation and luciferase with FH535 (Wnt/β-catenin and PPAR 
inhibitor) in these CD133+, CD44+, CD24+ cells. RT-PCR showed 
inhibition of Cyclin D21, and p21 and Survivin expression using FH535 
[12]. Moreover, in a different study, our group published the synergistic 
effect of FH535 and Sorafenib in combination on inhibition of LCSC´s 
proliferation. On Western Blot analysis we demonstrated enhanced 
cleaved poly (ADP-ribose) polymerase (PARP) and inhibition of cyclin 
D1, Bcl2, Survivin and c-myc with this combination [13].

In conclusion, HCC has proven to be a very heterogeneous disease 

and hepatocarcinogenesis remains a very complex process, with 
multiple factors involved in its origin. According to the cancer stem cells 
hypothesis cancer initiation, progression, recurrence, metastasis and 
therapy resistance are unique properties implicit on CSC subsets. RAS/
RAF/MAPK, Wnt-β-catenin, EGFR, PI3K/mTOR, Notch, Hedgehog, 
among others signalling pathways are related to carcinogenesis and 
their components represent molecular targets for therapy in HCC. 

The management of HCC has changed substantially in the recent 
times, and the development of Sorafenib represented a significant 
breakthrough that has prompted further expansion on molecular-
targeted therapies that potentially inhibit different pathways. Because 
of the heterogeneity of these cancers and the complex process involved 
in HCC carcinogenesis, our group and others suggest that combination 
therapy should be essential in HCC treatment. Our group and others 
demonstrated that patterns of response to combined therapy are 
different between both non-LCSC and LCSC cell lines. We proved the 
efficacy of combination therapy over monotherapy, and synergism 
using the combination of β-catenin and PI3K/mTOR inhibitors and 
Sorafenib for inhibiting non-LCSC and LCSC HCC cell line. 

Focusing on targeting CSCs should bring important and 
revolutionary advances in cancer therapy. However, the understanding 
of LCSCs still remains limited and further studies are warranted to 
assess their association with HCC prognosis and their potential as 
targets of molecular therapy.
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