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Abstract
Pharmacological inhibition of dynamin-related protein 1 (Drp1) the main mammalian promoter of mitochondrial 

fission - has emerged as a promising therapeutic target for the treatment of neuronal injuries. Genetic studies, 
however, have revealed that inhibiting Drp1 during development leads to defects especially in neuronal differentiation. 
Bypassing this neurodevelopmental impairment, a number of recent studies have genetically ablated Drp1 in 
different adult neuronal subpopulations. This has led to new insights into the importance of mitochondrial fission in 
differentiated neurons and has highlighted potentially severe side effects of this new therapeutic strategy.

Commentary
Neurons have a particularly high energy demand and are heavily 

dependent on a functional mitochondrial network. Mitochondria 
constantly engage in membrane fusion and fission cycles, in which single 
organelles frequently bud off or merge with the mitochondrial syncytium 
[1]. Single mitochondria sprouting from the network are transported 
along the cytoskeleton into distant sub cellular compartments such as 
synapses and neuronal spines where they can respond to local energy 
demands [2]. Mitochondrial fission is believed to be substantial for 
the sequestration of defective organelles and their removal from the 
network through a specialized form of autophagy called mitophagy 
[3,4]. Fusion, on the other hand, is important for maintaining qualitative 
homogeneity of the syncytium through complementation [5]. Both 
mitochondrial fusion and fission are mediated by highly conserved 
dynamin-like proteins capable of self-assembling, GTP hydrolysis and 
membrane remodeling [6]. The only known bona fide mammalian pro-
fission protein of the dynamin superfamily is the cytosolic dynamin-
related protein 1 (Drp1). It is activated by the phosphorylation of one 
or more residues and translocates to predefined mitochondrial fission 
sites where it binds to outer mitochondrial membrane-bound adaptor 
proteins such as mitochondrial fission factor (Mff) or Mid49/51 [7]. 
The exact molecular configuration of these fission sites is currently 
not fully understood. According to a currently favored model, Drp1 
translocation is preceded by ER tubules wrapping around mitochondria 
to constrict the organelles. A growing body of evidence suggests that 
this initial step of mitochondrial fission is driven by the constriction 
of actin and myosin filaments to create a geometric hotspot for the 
assembly of multimeric Drp1 complexes which upon GTP hydrolysis-
constrict further to complete the mitochondrial fission process [8]. 

The fragmentation of the mitochondrial network is one of the 
evolutionary conserved hall-mark events of apoptosis. In mammals 
inhibition of mitochondrial fission by disrupting of Drp1 function 
leads to a delay of cytochrome c release and consequently protects 
from apoptosis [9,10]. In cultured neurons Drp1 ablation leads to a 
super-elongation of the mitochondrial network and has been shown 
to be neuroprotective [11]. Accordingly, several studies reported 
neuroprotective effects of Drp1 inhibitors in animal models of 
brain ischemia [12-15], retinal ganglion cell ischemia [16], spinal 
cord ischemia and injury [17,18], traumatic brain injury [19], status 
epilepticus [20-22], as well as Huntington’s [23] and Parkinson’s 
disease (PD) [24]. However, seemingly contradictory in vitro studies 
of Drp1 ablation in cultured neurons have also reported the formation 
of spherically enlarged mitochondria that aggregate in the perikarya. 
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This phenotype, as opposed to the neuroprotection of the super-
elongated phenotype, is linked to neurodegeneration [11]. Further, 
two Drp1 constitutive knockout mouse models displayed severe 
neurodevelopmental defects [25,26], and similar observations were 
made in a human infant born with a de novo dominant-negative Drp1 
mutation [27] and in patients with mutations in the mitochondrial Drp1 
receptor, Mff [28]. Moreover, deleting Drp1 in adult neuronal stem 
cells leads to defective differentiation [29,30]. The importance of Drp1 
function for differentiating and proliferating tissues is also underlined 
by the decrease of tumor aggressiveness upon treatment with Drp1 
inhibitors [31-33]. Mechanistically, disrupting cell proliferation and 
differentiation by Drp1 inhibition is linked to: (i) cell cycle arrest 
due to uneven distribution of hyperfused mitochondria to progeny 
after mitosis, (ii) to favoring in tumor cells a non-glycolytic cellular 
metabolism counteracting the Warburg effect, and (iii) to defects 
in cell migration due to the inability of hyperfused mitochondria to 
concentrate in lamellipodia and growth cones [34].

All of these mechanisms should be less relevant for the survival of 
postmitotic adult neurons. Neuroprotective effects of Drp1 inhibitors 
made it likely that the anti-apoptotic effect of Drp1 inhibition would 
prevail in Drp1-ablated postmitotic neurons in vivo. However, genetic 
Drp1 deletion in adult Purkinje cells in 3-week-old mice led to their 
complete degeneration within 6 months [35]. Similarly, Drp1 ablation 
in midbrain dopaminergic neurons of 3-month-old mice caused 
their degeneration within 2.5 months, sparing only a sub-population 
apparently resistant to ablation of mitochondrial fission [36]. Greater 
resilience to genetic ablation of Drp1 was found in hippocampal neurons 
of 2-month-old mice which did not display signs of neurodegeneration 
for up to 3 months [37]. In another model, deleting Drp1 in hippocampal 
neurons of newborn mice rendered neurons viable for up to one year 
[38]. However, hippocampal Drp1 ablation in these later two studies 
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was not without effects: both studies reported that short-term memory 
and synaptic short-term potentiation was decreased, accompanied by 
hippocampal atrophy [37,38]. Further, it was shown that the number 
of presynaptic mitochondria was decreased [37], and similar findings 
were made in dopaminergic neurons resistant to Drp1 ablation [36]. 
In all of these models the mitochondrial network was characterized by 
spherically enlarged mitochondria that aggregated in the perikarya, a 
mitochondrial phenotype that is associated with neurodegeneration 
in cultured neurons [11]. In contrast to mitochondria of Drp1-ablated 
mouse embryonic fibroblasts, mitochondria of Drp1-ablated neurons 
exhibit rather severe respiratory deficits [25,37]. 

Collectively, from these studies a picture emerges whereby 
prolonged neuronal Drp1 ablation leads to spherically enlarged, 
respiratory-deficient mitochondria whose transport to presynaptic 
terminals is impaired. The intrinsic resistance to these energetic 
deficits apparently varies greatly among neuronal subtypes. Purkinje 
cells and dopaminergic neurons are known to be selectively 
susceptible to degeneration in other disease-related contexts such 
as Autism and PD respectively. The super-elongated mitochondrial 
phenotype reported as anti-apoptotic and neuroprotective in vitro 
has in vivo only transiently been observed in Drp1-ablated Purkinje 
cells [35] while it was not detectable in Drp1-ablated hippocampal 
neurons [37]. All of these discussed animal models used Cre-driven 
recombination of a floxed Drp1 locus to genetically ablate Drp1. A 
recent study infecting adult dopaminergic neurons of 3-month-old 
mice with a viral construct expressing a dominant negative mutation 
of Drp1 (Drp1K38A) has reported elongated mitochondria and 
neuroprotection against a neurotoxin which induces PD-like symptoms 
2 months after viral infection [24]. In contrast, Drp1 ablation via 
recombination of the Drp1 locus in dopaminergic midbrain neurons 
leads to 90% neurodegeneration within 2.5 months. The dominant-
negative mutation Drp1K38A inhibits GTP hydrolysis but not Drp1 
recruitment to mitochondria and the most commonly used Drp1 
inhibitor (mdivi-1) has a similar mechanism of action [39]. Potentially, 
the K38A mutation as well as the Drp1 inhibition by mdivi-1 is more 
tolerable for neurons than the complete genetic deletion of Drp1. It 
remains to be tested whether low frequency mitochondrial fission is 
maintained under these conditions. Potentially, new transgenic mice 
which could be induced to express lowered levels of Drp1 or to express 
a dominant negative mutation of Drp1 for a limited time would show 
only the beneficial effects of Drp1 ablation without the neuronal deficit. 
Taking into account the lessons learned from mouse models using a 
genetic Drp1 knockout strategy so far, it appears that close monitoring 
of mitochondrial morphology is mandatory upon treatment with Drp1 
inhibitors. This aspect seems particularly important when treatment 
is targeted to more vulnerable neuronal subpopulations such as 
dopaminergic midbrain neurons, to prevent neuronal mitochondria 
from spherical enlargement and aggregation in perikarya.
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