

Language Gene Polymorphism Patterns: Important Information on Human Evolution

Wei Xia^{1,2}, Zhizhou Zhang^{1*}

¹BIOX Center for Biotechnology, Harbin Institute of Technology, Weihai, China; ²School of Languages and Literature, Harbin Institute of Technology, Weihai, China

ABSTRACT

The difference in Language Gene Polymorphism Pattern (LGPP) between human and other primates may help to provide novel useful knowledge for language learning and human evolution. One of important findings from many years worldwide research is that the primates like chimpanzees cannot easily recognize language grammars (even words). In this study, 189 SNPs (Single Nucleotide Polymorphism) in 13 language genes were scanned in 29 whole genomes from different human and primates populations. The 19 distinct SNPs in primates genomes were pointed out in several language genes including *TPK1* that correlates with human's syntactic and lexical ability. Principle component analysis found that LGPPs for primates were highly aggregated together but they are distant from human's; representative human samples displayed high dispersion levels from each other in the context of LGPP. The above results may highlight a possibility that the LGPP should have some intermediate forms between human and chimpanzee-like primates.

Keywords: Language gene; Language ability; Human ; Primates; Polymorphism pattern

INTRODUCTION

Chimpanzee's learning ability, including language ability, has been investigated for many years, one of the aims of which is to understand why and how human performs much better than Primates [1-6]. Especially, which differences in brain structures or (language) genes may contribute to the learning performance levels. Language ability has been a significant issue to investigate and compare among human individuals, chimpanzees (Pan troglodytes), bonobos (Pan paniscus) and other primates. Language ability can be tested from listening, speaking to reading and writing. Apparently, listening itself may be not a problem for a chimpanzee, but speaking, reading and writing are too far away from chimpanzees' capacity, though some other animals already possess ability for word regularities (affixation) [7-9]. It seems that this big difference derives only from the 1%-2% difference in the genome sequences of human and chimpanzee. Communication between chimpanzees/bonobos in the wild takes the form of gestures, facial expressions, and a plenty of vocalization types, including grunts, roars, hoots, and screams. However, both kinds of Primates cannot orally speak like human even after many years of education. The less dependence on tools, likely the less need to develop languages, because description of tool activities cannot be well fulfilled simply by non-oral expressions.

Language is a structured system that consists of grammar and vocabulary, by which humans convey meaning in the forms of spoken, written or signs of language. There are over 7000 different human languages with significant variations in cultural and historical diversity. Meanwhile, language has its own biological root. By now over a dozen of human language genes have been preliminarily characterized (Table 1). Though the human version of the gene FOXP2 harbors changes not found in chimpanzees or other primates, it is not reasonable to explain key language puzzles by a single mutation in modern humans [10,11]. But thousands of such mutations in language genes may help to find some patterns pointing to important issues, such as the cause of leaning ability difference. As the first step to this direction, this study employed 189 SNPs from 13 language genes in 29 whole genomes and found some SNP points that can significantly distinguish between human and primates.

Copyright: © 2023 Xia W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Correspondence to: Zhizhou Zhang, BIOX Center for Biotechnology, Harbin Institute of Technology, Weihai, Shandong, China, E-mail: zhangzzbiox@hitwh.edu.cn

Received: 14-Aug-2023, Manuscript No. JDMGP-23-22589; Editor assigned: 17-Aug-2023, PreQC No. JDMGP-23-22589 (PQ); Reviewed: 31-Aug-2023, QC No JDMGP-23-22589; Revised: 07-Sep-2023, Manuscript No. JDMGP-23-22589 (R); Published: 14-Sep-2023 DOI: 10.4172/2153-0602.23.14.316

Citation: Xia W, Zhang Z (2023). Language Gene Polymorphism Patterns: Important Information on Human Evolution. J Data Mining Genomics Proteomics. 14:316.

Xia W, et al.

Language ability: An original complicated procedure of muscle movements

Language ability is one of the core features of the human species. The evolution of language ability should also witness the evolution of the human brain's intelligence and the vocal organs, taking millions to tens of millions of years. The earliest primate's record is about 60 million years. In 2022, it was reported that Sahelanthropus tchadensis (the known earliest human-like ape or early-stage Homo erectus) was able to walk upright 7 million years ago, and other studies inferred that late-stage Homo erectus should already be able to use language fluently [12,13]. The communication between apes is mainly gesture language, which goes through a long process with the evolution of the brain (and gradually solidified various gesture language and body language into a brain signal), and is reflected in the way of sound [15]. Sound is also produced by the muscle movement of specific organs of the body, which is the mechanical movement of the occurring organs. This can also explain why language control regions in the brain are highly overlapping with motor control regions [16].

Evolution after upright walking: Due to eating cooked food and genetic mutations, the brain organs have the ability to process complex signals; All of the organs are connected to the nervous system. The organs of the eyes, ears and mouth gradually produce a preliminary language; The movement of both hands also greatly promotes the generation of language; Language processes are actually similar to other limb movements, though language is the movement of the organs of the eyes, ears and mouth; The evolution process of language gene polymorphism is the process of the gradual improvement of language ability. The eyes, ears and mouths share the same neural control circuit as bimanual movements, because, in the course of evolution, the eyes, ears and mouths themselves are one of the most moving organs, or the most primitive motor organs. They received the most neural connections during evolution, laying the foundation for functional complexity. Meanwhile, technology for making and using tools in Homo erectus has also further evolved, and these techniques cannot be delivered precisely without the aid of language. Evolution may make the brain suddenly have a complex-enough computing power, opening an evolutionary opportunity for coordination between audiovisual stimulation signals and muscle movements, including

Table 1: Language genes employed in this study.

opportunities to improve language levels [17].

Concepts of language gene and Language Gene Polymorphism Pattern (LGPP)

Genes directly related to language ability are called language genes. The direct correlation here means that if a gene is deleted or mutated or significantly altered in quantitative genetic traits, all or part of the language function is lost or weakened. At present, there are about 19 human language genes [13,18,19], with a large number of Single Nucleotide Polymorphism (SNP) or mutation sites of Single Nucleotide Variation (SNV) on the sequence of each language gene. A total of 19 language genes can be several million SNP/SNV loci that can be used to describe the patterns of language gene polymorphism and their evolution dynamics in different ancient human samples.

LGPPs of human species and the primates

Research on advanced primates has been conducted for nearly a century. One of the main questions to clarify in such studies is understanding how higher primates such as chimpanzees evolved into humans. The differences between humans and chimpanzees, especially abilities in language and cognition are of primary concern. A large number of studies can be seen in some reviews, but few studies have been observed between the two from the perspective of language gene polymorphism patterns [20,21]. In this study, 189 SNPs (Single Nucleotide Polymorphism) in 13 language genes were scanned in 29 whole genomes from different human and primates populations.

MATERIALS AND METHODS

Language genes and their SNPs

In the Table 1 listed 13 language genes (as a preliminary observation, only 13 language genes were employed at the time the manuscript was written), and a total 189 SNPs from these 13 genes were selected for this study. Language gene SNP data were all semirandomly selected (Figure 1) for each gene in the dbSNP database: https://www.ncbi.nlm.nih.gov/snp/; Some SNPs have limited information on clinical effects as shown in dbSNP and GeneCards databases (Table 2).

S. No	Name	Compromised language ability when mutated	Other functional information	References
1	ATP2C2	Memory	Specific language impairment and some oral communication disorders	21
2	CMIP	Reading	Memory, speech and communication disorders	21-23
3	CNTNAP2	Early language development	Implicated in multiple neurodevelopmental disorders, including schizophrenia, epilepsy, autism and intellectual disability	22-25
4	DCDC2	Reading, dyslexia	Diseases associated with DCDC2 include deafness, autosomal recessive 66 and sclerosing cholangitis	23,26,27
5	FLNC	Reading, language	Involved in reorganizing the actin cytoskeleton in response to signaling events (such as vocalization)	28
6	FOXP1	Expressive language	Diseases associated with FOXP1 include intellectual disability-severe speech delay-mild dysmorphism syndrome and intellectual developmental disorder with language impairment and with or without autistic features	29
7	FOXP2	Speech		30
8	KIAA0319	Reading, dyslexia	Involved in neuronal migration during development of the cerebral neocortex	22,23,31,32
9	NFXL1	Speech	Specific language impairment	33

OPEN OACCESS Freely available online

10	ROBO1	Phonological buffer	axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development	34,35
11	ROBO2	Expressive vocabulary	Nervous system development	36
12	TM4SF20	Language delay	Neurobehavioral phenotype with abnormal motor coordination; communication disorder	37
13	TPK1	Syntactic and lexical ability	Childhood encephalopathy	38,39

Figure 1: Semi-randomly selected SNP sites and their approximate positions in 13 language genes. Note: The + sign above a triangle means the SNP site had a known clinical phenotype as indicated in dbSNP and GeneCards databases.

Language gene/SNP	Language gene/SNP	Language gene/SNP	Language gene/SNP	Language gene/SNP
ATP2C2 rs13334642	CNTNAP2 rs987456	FOXP1-1s1733518	KIAA0319 rs7770041	ROBO2 rs5788280
ATP2C2 rs16973859	DCDC2 rs190254728	FOXP1-1s17803583	NFXL1 rs1036681	ROBO2 rs78817248
ATP2C2 rs2435172	DCDC2 rs2274305	FOXP1-rs200643313	NFXL1 rs12651301	ROBO2-1s12171318
 ATP2C2 rs247818	DCDC2 rs33914824	FOXP1-rs2044341412	NFXL1 rs13152765	ROBO2-rs1372422
ATP2C2 rs247885	DCDC2 rs33943110	FOXP1-rs2048059	NFXL1 rs1371730	ROBO2-1s1372427
ATP2C2 rs4782948	DCDC2 rs34584835	FOXP1-rs722261	NFXL1 rs1440228	ROBO2-rs1503125
ATP2C2 rs4782970	DCDC2 rs35029429	FOXP2 rs10227893	NFXL1 rs147017712	ROBO2-rs17203
ATP2C2 rs62050917	DCDC2 rs3789219	FOXP2 rs10244649	NFXL1 rs1545200	ROBO2-rs264546
ATP2C2 rs62640931	DCDC2 rs3846827	FOXP2 rs1058335	NFXL1 rs1812964	ROBO2-1s699456
 ATP2C2 rs62640932	DCDC2 rs9460973	FOXP2 rs12705977	NFXL1 rs1822029	ROBO2-1s873596
ATP2C2 rs62640935	DCDC2 rs9467075	FOXP2 rs144807019	NFXL1 rs1822030	TM4SF20 rs13415654
ATP2C2 rs74038217	FLNC rs117864464	FOXP2 rs182138317	NFXL1 rs1964425	TM4SF20 rs137891000

Table 2: Tested 189 SNPs of thirteen language genes.

ATP2C2 rs78371901	FLNC rs2249128	FOXP2 rs61732741	NFXL1 rs34323060	TM4SF20 rs4408717
CMIP rs114894868	FLNC rs2291558	FOXP2 rs61753357	NFXL1 rs920462	TM4SF20 rs4428010
CMIP rs1187121850	FLNC rs2291560	FOXP2 rs61758964	NFXL1 rs978094	TM4SF20 rs4438464
CMIP rs 16955675	FLNC rs2291561	FOXP2 rs62640396	ROBO1 rs34841026	TM4SF20 rs44675173
CMIP rs183075361	FLNC rs2291562	FOXP2 rs73210755	ROBO1 rs35456279	TM4SF20 rs4673192
CMIP rs183876152	FLNC rs2291563	FOXP2-rs531957198	ROBO1 rs6795556	TM4SF20 rs4675172
CMIP rs201316817	FLNC rs2291565	FOXP2-1s718378	ROBO1 rs77350918	TM4SF20 rs6724955
CMIP rs2288011	FLNC rs2291566	FOXP2-rs724419	ROBO1-rs1378638	TM4SF20 rs80305648
CMIP rs34119643	FLNC rs2291568	FOXP2-1s747126499	ROBO1-rs162423	TM4SF20-rs10168278
CMIP rs35429777	FLNC rs2291569	FOXP2-rs773664240	ROBO1-rs331168	TM4SF20-rs4675173
CMIP rs57603843	FLNC rs35281128	FOXP2-rs776920	ROBO1-rs3923148	TM4SF20-1s7568026
CMIP rs60152409	FLNC rs371111092	FOXP2-rs814066	ROBO1-rs4130219	TM4SF20-rs7574414
CMIP rs74031247	FOXP1 rs1053797	FOXP2-rs940468	ROBO1-rs4130431	TM4SF20-rs9678000
CMIP rs79979027	FOXP1 rs11914627	FOXP2-1s956016	ROBO1-rs716681	TPK1 1s113536847
CNTNAP2 rs1062071	FOXP1 rs144080925	KIAA0319 rs10946705	ROBO1-rs80030397	TPK1 rs12333969
CNTNAP2 rs1062072	FOXP1 rs147756430	KIAA0319 rs114195393	ROBO1-rs991787	TPK1 rs17170295
CNTNAP2 rs 1468370	FOXP1 rs1499893	KIAA0319 rs115399701	ROBO2 rs1031377	TPK1 rs28380423
CNTNAP2 rs1479837	FOXP1 rs17008063	KIAA0319 rs117692893	ROBO2 rs10865561	TPK1 1567644764
CNTNAP2 rs1637841	FOXP1 rs17008224	KIAA0319 rs138160539	ROBO2 rs11127602	TPK1 rs6953807
CNTNAP2 rs1637842	FOXP1 rs17008544	KIAA0319 rs150584710	ROBO2 rs1163748	TPK1 rs77358162
CNTNAP2 rs2373284	FOXP1 rs75214049	KIAA0319 rs699461	ROBO2 rs1163749	TPK1 rs79464600
CNTNAP2 rs3194	FOXP1 rs76145927	KIAA0319 rs699462	ROBO2 rs1163750	TPK1-1s228582
CNTNAP2 rs535454043	FOXP1 rs7638391	KIAA0319 rs699463	ROBO2 rs144468527	TPK1-rs38045
CNTNAP2 rs61732853	FOXP1 rs7639736	KIAA0319 rs730860	ROBO2 rs17525412	TPK1-rs38046
CNTNAP2 rs700308	FOXP1-1s1288693	KIAA0319 rs75674723	ROBO2 rs3923744	TPK1-rs41239
CNTNAP2 rs700309	FOXP1-rs1463951	KIAA0319 rs75720688	ROBO2 rs3923745	
· · · · · · · · · · · · · · · · · · ·				

Genome sequences

All genome sequences were downloaded from ENA database (https://www.ebi.ac.uk/ena/browser/) in the fast format (Table 3). In all 29 genomes, the sizes mainly range from 41G to 200G. There are 14 representative human samples in which 10 were ancient samples. Four from Asia, one from Africa, eight from Europe and one from South America. In the 15 primate samples, two from China, four from Indonesia and the left eight from Africa.

SNP information extraction from genome sequences

This study was actually to investigate in what extent the primates and ancient human samples still hold the same SNP sequences as modern human, since the query sequences of SNPs were all downloaded from present dbSNP database that harbors mainly modern human SNPs. The authors used 010 Editor software to extract all 189 SNP information from each genome. For each SNP, about 20 left-flanking or right-flanking query nucleotides were searched in the genome in both DNA strands. Perfectly matched sequences were recorded using the SNP base A, T, G, C or combinations with them. For example, some sample may have both bases in a specific SNP sites, and thus recorded as AC, GC, etc. For those target sequences not perfectly matched around the SNP site, if the imperfect match occurs at the left flanking region, the SNP was recorded like A-, T-, C- or G-; if the imperfection occurs at the right flanking region, the SNP was recorded like A+, T+, C+ or G+ as in Table 4. Both-sides imperfection may occur such as A-G+, T-C- and A+C+. Imperfection counts only in the 4 bases left or right around the SNP site when at least one base in the four was mismatched (while the other bases in the query sequence were all matched). Any other cases of imperfection will be recorded as zero. The collected SNP data and the digitalized version can be requested from the authors.

PCA analysis with R codes

Principal Component Analysis (PCA) was performed using R packages FactoMineR, factoextra and ggplot2. The main R codes are listed as follow. SNP data had to be digitalized before PCA performance. All SNP alleles were written in the sequence of A, T, G and C. For example, A, T, GC (not CG), TC (not CT) and ATC. For A, T, G and C, 999000000000, 999000000, 9990000, and 999 were assigned, respectively. For two-letter SNP cases, such as AT, AC and GC, 9999990000000, 999000000999 and 999999 were used, respectively.

For those with left-flanking im-perfection, for example, A-,G- and C-, 997000000000, 997000 and 997 were assigned, respectively; for those with right-flanking im-perfection or both-sides im-perfection, such as T+, G+, A-C+, A+GC- and A+C-, 998000000, 998000, 997000000998, 998000999997 and 998000000997 were assigned, respectively.

- > library(FactoMineR)
- > library(factoextra)
- > library(ggplot2)

> country <- read.delim('C:/RBook/20230315fastqSNPdata.txt', row.names = 1, sep = '\t')

- > country <- t(country)</p>
- > country.pca < PCA(country, ncp = 2, scale.unit = TRUE, graph = FALSE)
- > plot(country.pca)
- > pca_sample <- data.frame(country.pca\$ind\$coord[,1:2])
- > head(pca_sample)

- > pca_eig1 <- round(country.pca\$eig[1,2], 2)
- > pca_eig2 <- round(country.pca\$eig[2,2],2)
- > pca_eig1
- > pca_eig2
- > group <- read.delim('C:/RBook/group3.txt', row.names = 1, sep = '\t', check.names = FALSE)
- > group <- group [rownames(pca_sample),]
- > pca_sample <- cbind(pca_sample, group)
- > pca_sample\$samples <- rownames(pca_sample)

Table 3: The 29 whole genomes employed in this study.

> head(pca_sample)

> library(ggrepel)

> ggplot (data = pca_sample, aes (x = Dim.1, y = Dim.2)) + geom_ point (aes (color = group), size = 3) + scale_color_manual (values = c('purple', 'red', 'green', 'blue', 'brown', 'pink', 'yellow', 'orange', 'grey')) + theme (panel.grid = element_blank(), panel.background = element_rect (color = 'black', fill = 'transparent'), legend.key = element_rect (fill='transparent')) + labs(x=paste('PCA1:', pca_eig1, '%'), y=paste('PCA2:', pca_eig2, '%'), color = '') + geom_text_repel (aes (label = samples), size = 3, show.legend = FALSE, box.padding = unit(0.25, 'lines'))

No.	abbr	Country	Region	Age (BP)	Details	Genome file	References
1	pa6	Pakistan	South Asia		Pakistan Brahui	113	PRJEB9586
2	c19	China (a)	East Asia	5304-5056	China(WGM35)	83	PRJEB36297
3	c9	China (a)	East Asia	6175-5937	XW-M1R18	117	PRJEB36297
4	dvi	China/Russia (a)	East Asia	8000	Devils Gate	41	PRJEB14817
5	ke2	Kenya	Africa		Kenya Luhya-2	84	PRJEB9586
6	nd4	Russia (a)	Europe	50300	Neanderthal Altai	158	PRJEB1265
7	nd2	Spain (a)	Europe	60,000-120,000	Neanderthal Forbes Quarry	143	PRJEB31410
8	nd1	Russia (a)	Europe	50000	Neanderthal-MIX1	64	PRJEB29475
9	sp1	Spain	Europe		SPAIN-1	200	PRJNA42557
10	fr4	France (a)	Europe	4000	France4000	167	PRJEB9586
11	cz1	Czech (a)	Europe	45000	Czechia anciemt	112	PRJEB39040
12	de2	Russia (a)	Europe	100000	Denisova2	109	PRJEB20653
13	dep	Russia (a)	Europe	74000-82000	DenisovaPha	95	PRJEB3092
14	pe1	Peru	SouthAm		PERU ERR042535-MIX1	67	PRJEB31736
							SRR741770
15	pp1	Congo	Africa		Salonga Pan paniscus	63	SRR741768
							SRR741785
16	pp2	Congo	Africa		Pan Paniscus Kosana	74	PRJNA189439
17	pp3	Congo	Africa		Pan paniscus Catherine	105	PRJNA189439
18	rr1	China	EastAsia		Rhinopithecus roxellanaRR0- RR5+RR15-RR18	96	PRJNA283338
19	rr2	China	EastAsia		Rhinopithecus roxellanaRR12- RR14	91	PRJNA283338
20	go1	Congo	Africa		Gorrila-AZIZI	89	PRJNA189439
21	go2	Congo	Africa		Gorrila KAISI+SUZIE	95	PRJNA189439
22	go3	Congo	Africa		Gorrila Katie_B650	95	PRJNA189439
23	pg1	Indonesia	South Asia		Pongo abelii Kiki	87	PRJNA189439
24	pg2	Indonesia	South Asia		Pongo abelii Elsi	87	PRJNA189439
25	pg3	Indonesia	South Asia		Pongo pygmaeus Sari	102	PRJNA189439
26	pg4	Indonesia	South Asia		Pongo tapanuliensis PA_B019	117	PRJEB19688
27	pt2	Congo	Africa		Pan troglodytes Clint	84	PRJNA189439
28	pt3	Congo	Africa		Pan troglodytes Akwaya-Jean	91	PRJNA189439
29	pt4	Congo	Africa		Pan troglodytes Julie_LWC21	102	PRJNA189439
Note: (a): A	Ancient sa	mple: SouthAm: South	n America.				

Table 4: Nineteen SNPs (s1-s19) that may separate human from primates (I).

	pp3	pp2	pp1	go3	go2	go1	pg4	pg3	pg2	pg1	pt4	pt3	pt2	pa6	ke2	SP1	PE1	FR4	c19	c9	Dvi	De2	Cz1	Nd1	Nd4	Nd2	DeP
sl	A	A	A	A	A	A	A-	A	A	A	A	A	A	G	G	TG	G	Т	0	0	0	0	G	0	G	0	G
s2	C	С	C	С	С	С	С	C	С	С	C	C	C	TC	С	TC	CT	С	0	С	0	0	С	0	TC	0	Т
s3	G	G	G	G	G	G	G	G	G	G	G	G	G	С	GC	С	С	С	С	GC	0	0	GC	С	С	0	С
s4	G	G	G	G+	G+	G+	G	G	G	G	G	G	G	G+	А	AG	А	А	G	AG	А	G	AG	А	А	0	G
s5	G	G	G	А	А	А	G	G	G	G	G	G	G	G	G	G	G	AG	G	G	0	0	G	0	G	0	G
s6	С	С	С	С	С	С	С	С	С	С	С	С	С	TC	Т	TC	С	С	С	С	0	С	С	0	С	0	С
s7	Т	Т	Т	AT	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	G	G	G	Т	0	0	0	G	G	G	0	G
s8	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	TG	Т	TG	G	G	G	G	Т	G	G	Т	G	0	G
s9	G	G	G	G	G	G	G	G	G	G	G	G	G	AG	G	AG	G	G	А	0	0	G	G	G	G	0	G
s10	С	С	С	С	С	С	С	С	С	С	С	С	С	А	AC	AC	А	AC	0	0	0	0	А	С	AC	0	С
sll	G	G	G	G	G	G	G	G	G	G	G	G	G	TG	G	TG	G	TG	G	G	0	G	Т	0	G	G	G
s12	А	А	А	А	А	А	А	А	А	А	А	А	А	С	AC	AC	А	А	0	А	0	0	С	С	С	0	С
s13	G	G	G	G	G	G	G	G	G	0	G	G	G	TG	G	TG	G	0	0	G	0	G	Т	0	G	0	G
s14	G	G	G	G	G	G	G	G	G	G	G	G	G	0	G	G	G	G	А	G	0	0	G	0	G	0	G
sl5	С	С	С	С	С	С	С	С	С	С	С	С	С	A+	С	С	С	С	С	С	0	С	С	Т	С	0	С
s16	0	G	G	0	А	А	G	G	G	G	G	G	G	0	G	G	G	G	0	G	С	G	G	G	G	0	G
s17	С	С	С	С	C+	С	0	0	0	0	С	С	С	0	С	С	С	TC	С	С	С	0	С	С	С	0	С
s18	А	А	А	G	G	G	0	0	0	А	А	А	А	0	G	G	G	G	G	G	0	0	G	G	G	0	G
s19	А	А	А	AT	А	Т	A-	А	0	А	А	А	А	А	AG	G	А	А	0	0	0	А	G	G	G	0	А

Note: The yellow-colored parts refer to SNPs that are significantly different between primates and human samples. Blue colors denote some Gorrila- or Pongo-specific information.

RESULT AND DISCUSSION

There is a very high density between primate samples, and there is a significant gap from the primates to human samples, though human samples are very dispersed (Figure 2). This result implies that either there are other intermediate species between primates and modern human, for example, different types of *Homo erectus*, or that the key LGPPs arise only after the emergence of *Homo erectus*. By now, the authors haven't been able to collect genome sequences from fossil Australopithecus, including different types of *Homo erectus*. Hopefully their LGPPs just lie in the gap between the primates and modern human. There are some literature suggesting that the key events in language evolution occurred only in the hominin lineage, after the divergence from panins [20].

It is also possible that the language gene polymorphism pattern is not enough to distinguish humans from other animals, such as dolphins and parrots whose LGPPs are actually close to humans (data not shown). People probably have to rely on a mixed polymorphism pattern from both language genes and cognition genes. In theory, this hybrid model may be a better point to support the development of completely new language learning methods. This needs to be seen in much subsequent research [22-39].

Language evolution involves several important processes of Australopithecus-Man ape-Ape man-*Homo erectus-Homo sapiens*. Several key breakthroughs in language evolution were believed to be completed at some points in some above process. LGPP investigation may open a window for us to reach some breakthroughs. In Table 4, those SNPs with apparent difference between human and the primates were listed in nine language genes, and several SNP sites were significantly different between human samples and the primates, such as s1,s2,s3,s7,and s8 (also Table 5). The potential interaction network of the nine genes was described in Figure 3 with STRING tool in GeneCards database. Is that possible that human alleles and the primates alleles will lead to emergence of language ability's great leap-forward? S7 and s8 refer to *TPK1* gene, which has evidences to be associated with syntax and lexical retrieval, two important prerequisites for grammar function [40].

Table 5: Nineteen SNPs (s1-s19) that may separate human from primates (II).	

	SNP		SNP
s1 [†]	ROBO1 rs6795556* ¹²	s11	CNTNAP2 rs1468370 ^{* t1}
s2†	ROBO2 rs10865561 ^{* t3}	s12	CNTNAP2 rs987456 ^{* tlt4}
s3†	TM4SF20 rs6724955 ^{t1}	s13	CNTNAP2 rs700309 [*] ^{t1}
s4	TM4SF20 rs4438464 ^{t1}	s14	CMIP rs183876152* ^{t2}
s5	TPK1 rs113536847* 14	s15	CMIP rs114894868* ¹²
s6	TPK1 rs28380423 ^{* t1}	s16	ATP2C2 rs78371901* t2
s7 [†]	TPK1 rs17170295 ^{* t1}	s17	ATP2C2 rs62050917* t5
s8†	TPK1 rs67644764 t1t2	s18	ATP2C2 rs4782948* ¹²
\$9	NFXL1 rs1822030 ^{t1}	s19	KIAA0319 rs699461 ^{t1}
s10	KIAA0319 rs699461 ^{t1}		

Note: ': Benign clinical significance; t1: Intron variant; t2: Coding sequence variant; t3: Downstream transcript variant; t4: 3' UTR variant; t5: Non coding transcript variant; [†]: Significant difference between human and primates.

Figure 3: Potential molecular interactions among nine genes (as proteins) in Table 5. *TPK1* and *TM4SF20* were not linked in the potential network. Colors of the lines between two genes represent interaction types (see String database).

Since language ability was first just a muscle movement behavior, from this perspective, language must have evolved much earlier than human evolution. This is evident from other results (data not shown) of our preliminary study. We found that the language gene polymorphism pattern of parrots and dolphins is very close to that of some ancient humans and some modern humans, but the language gene polymorphism pattern of advanced primates such as chimpanzees is obviously or relatively far from human beings; From the ratio of brain weight to body weight, the human brain accounted for 2.1% of body weight, dolphins 1.17%, and chimpanzees only 0.7%. The fossils of parrots reached 55 million years; the 50 million year ancestor of Dolphin, Pakicetus, was found in Pakistan, and the dolphin family emerged from the Miocene about 12 million years ago [40]. But the earliest known upright Homo species was Chad Australopithecus only 7 million years ago. So these data indicate that some language gene polymorphism patterns appeared in the evolution much earlier than dolphins and other animals. If this is true, LGPP itself may be not enough to explain language ability difference between human and chimpanzees.

CONCLUSION

In this study, 189 semi-randomly selected SNPs (Single Nucleotide Polymorphism) in 13 language genes (SNP positions seen in Figure 1) were scanned in 29 whole genomes from different human and primates populations. The 19 distinct SNPs in primates genomes were found in several language genes including TPK1 that correlates with human's syntactic and lexical ability. PCA result indicated that the language gene polymorphism pattern does demonstrate differences between primates and representative human samples, and the difference appears quite obvious. This difference suggests that there may be some intermediate states between primates and modern humans, presumably among the late-stage apes, Homo erectus, or early Homo sapiens. But these intermediate species samples are the most scarce, usually very precious fossil-bone, skeleton or tooth samples. Given that investigations by 189 SNPs in 13 language genes cannot distinguish dolphins and human samples (data not shown) but already enable the separation Primates from human, a large number of SNPs and genes plus more various human samples are expected to employ in the near future.

ACKNOWLEDGMENT

This study was supported by State Language Commission Research Grant (YB135-117), Association of Chinese Graduate Education Grant (B-2017Y0505-079) and National Research Center for Foreign Language Education Grant (ZGWYJYJJ10A042).

REFERENCES

- 1. Yousaf A, Liu J, Ye S, Chen H. Current progress in evolutionary comparative genomics of great apes. Front Genet. 2021;12:657468.
- Krause MA, Beran MJ. Words matter: Reflections on language projects with chimpanzees and their implications. Am J Primatol. 2020;82(10):e23187.
- 3. Lameira AR, Call J. Understanding language evolution: Beyond pancentrism. Bioessays. 2020;42(3):1900102.
- 4. Beaudet A, Du A, Wood B. Evolution of the modern human brain. Prog Brain Res. 2019;250:219-250.
- 5. Matzel LD, Sauce B. Individual differences: Case studies of rodent and primate intelligence. J Exp Psychol Anim Learn Cogn. 2017;43(4):325.
- Pollick AS, De Waal FB. Ape gestures and language evolution. Proc Natl Acad Sci USA. 2007;104(19):8184-8189.
- 7. Terrace HS, Petitto LA, Sanders RJ, Bever TG. Can an ape create a sentence? Science. 1979;206(4421):891-902.
- Endress AD, Cahill D, Block S, Watumull J, Hauser MD. Evidence of an evolutionary precursor to human language affixation in a nonhuman primate. Biol Lett. 2009;5(6):749-751.
- 9. Chen J, Jansen N, Ten Cate C. Zebra finches are able to learn affixation-like patterns. Anim Cogn. 2016;19:65-73.
- Bornschein U, Zeberg H, Enard W, Hevers W, Pääbo S. Functional dissection of two amino acid substitutions unique to the human FOXP2 protein. Sci Rep. 2023;13(1):3747.
- Atkinson EG, Audesse AJ, Palacios JA, Bobo DM, Webb AE, Henn BM, et al. No evidence for recent selection at FOXP2 among diverse human populations. Cell. 2018;174(6):1424-1435.
- Daver G, Guy F, Mackaye HT, Likius A, Boisserie JR, Moussa A, et al. Postcranial evidence of late Miocene hominin bipedalism in Chad. G Nature. 2022;609(7925):94-100.
- 13. Hillert DG. On the evolving biology of language. Front Psychol.

2015;6:1796.

- Stout D, Chaminade T. Stone tools, language and the brain in human evolution. Philos Trans R Soc Lond B Biol Sci. 2012;367(1585):75-87.
- 15. Tattersall I. A tentative framework for the acquisition of language and modern human cognition. J Anthropol Sci. 2016;94:157-166.
- Huang J, Xia W, Ji H, Zhang Z. General correlation profile between the basic language parameters and language gene polymorphisms plus multiple edu-geo-cul-soc parameters of twenty-six countries. 2022;127-134.
- 17. Liu Z, Xia W, Sun B, Guo C, Zhang Z. Correlation analysis between language gene polymorphism and geography/society parameter from twenty-six countries. 2021.
- Wilson ML. Insights into human evolution from 60 years of research on chimpanzees at Gombe. Evol Hum Sci. 2021;3:e8.
- Hunt KD. Chimpanzee: Lessons from our sister species. Cambridge University Press; 2020.
- Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL, Clark A, et al. CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am J Hum Genet. 2009;85(2):264-272.
- Newbury DF, Paracchini S, Scerri TS, Winchester L, Addis L, Richardson AJ, et al. Investigation of dyslexia and SLI risk variants in reading-and language-impaired subjects. Behav Genet. 2011;41:90-104.
- 22. Scerri TS, Morris AP, Buckingham LL, Newbury DF, Miller LL, Monaco AP, et al. *DCDC2*, *KIAA0319* and *CMIP* are associated with reading-related traits. Biol Psychiatry 2011;70(3):237-245.
- Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, et al. A functional genetic link between distinct developmental language disorders. N Engl J Med. 2008;359(22):2337-2345.
- Whitehouse AJ, Bishop DV, Ang QW, Pennell CE, Fisher SE. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav. 2011;10(4):451-456.
- 25. Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pennington BF, DeFries JC, et al. Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: Linkage and association analyses. Hum Genet. 2004;115:128-138.
- 26. Schumacher J, Anthoni H, Dahdouh F, König IR, Hillmer AM, Kluck N, et al. Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet. 2006;78(1):52-62.
- Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC, Brandler WM, et al. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav. 2014;13(7):686-701.
- 28. Bacon C, Rappold GA. The distinct and overlapping phenotypic

spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet. 2012;131:1687-1698.

- 29. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519-523.
- 30. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y, et al. The chromosome 6p22 haplotype associated with dyslexia reduces the expression of *KIAA0319*, a novel gene involved in neuronal migration. Hum Mol Genet. 2006;15(10):1659-1666.
- 31. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS, Cardon LR, et al. A 77-kilobase region of chromosome 6p22. 2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet. 2004;75(6):1046-1058.
- 32. Villanueva P, Nudel R, Hoischen A, Fernández MA, Simpson NH, Gilissen C, et al. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLoS Genet. 2015;11(3):e1004925.
- 33. Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J, Kääriäinen H, et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet. 2005;1(4):e50.
- 34. Bates TC, Luciano M, Medland SE, Montgomery GW, Wright MJ, Martin NG. Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behav Genet. 2011;41:505-507.
- 35. St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS, O'Reilly PF, et al. Common variation near *ROBO2* is associated with expressive vocabulary in infancy. Nat Commun. 2014;5(1):4831.
- 36. Wiszniewski W, Hunter JV, Hanchard NA, Willer JR, Shaw C, Tian Q, et al. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. Am J Hum Genet. 2013;93(2):197-210.
- Villanueva P, Newbury DF, Jara L, De Barbieri Z, Mirza G, Palomino HM, et al. Genome-wide analysis of genetic susceptibility to language impairment in an isolated chilean population. Eur J Hum Genet. 2011;19(6):687-695.
- Fattal I, Friedmann N, Fattal-Valevski A. The crucial role of thiamine in the development of syntax and lexical retrieval: A study of infantile thiamine deficiency. Brain. 2011;134(6):1720-1739.
- Parrot fossil 55 million years old discovered in Scandinavia. Irish Research Council for Science, Engineering and Technology. 2008.
- Oelschläger HA. *Pakicetus inachus* and the origin of whales and dolphins (Mammalia: Cetacea). Gegenbaurs Morphol Jahrb 1987;133(5):673-685.