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Mini- Review

Epigenetic pathway is one of the major routes to carcinogenesis. A
key enzyme involved in this pathway is DNA-MTase (DMT). There
are evidences that carcinogens cause an increase in the activity of this
enzyme. The increased activity is due to an increase in transcriptional
control of the three forms of the enzyme, Dnm1, Dnm3a and Dnm3b
[1]. The general function of DMTs was described by Berletch et al. [2].
The enzyme catalyses the transfer of methyl groups from 5-
adenoxylmethionine (SAM) to GpC islands in key protein binding
sites of DNA. The essential function of DMTs is to methylate the CpG
islands in cancer suppressor genes, thus inactivating these suppressor
genes and enabling the expression of cancer associated genes and
thereby allowing the carcinogenic process to occur [3-5]. In normal
cells, most CpG sequences are methylated but there are still 15% of
which are not methylated, the CpG sequences are clustered in 20,000
regions called CpG islands which are not methylated. Aberrant
methylation leads to cancer [5]. That is DMT is the key that opens the
door to a major pathway leading to cancer.

DMT has a role not only in carcinogenesis but in mitogenesis as
well. Yang et al. [6] showed that the action of mitogens on T-cells
involves DNA methylation. In fact, epigenetic pathways may be
involved in the expression of the mitogens themselves [7]. Warburton
et al. [8] reported that epigenetic pathways are involved in the action
of EGF on embryo cells. Hypomethylation is involved in
atherosclerosis lesions, and such hypomethylation gives rise to the
increased DNA synthesis in these lesions [9].

Carcinogens have been found to increase expression of DMT. Ge et
al. [10] reported that Wy-14643, a carcinogen, induces
hypomethylation of the c-myc oncogene which promoted the
expression of c-myc. They also reported that the activity of DMT is
increased by this enzyme. As we reported in our earlier paper [11],
overexpression of c-myc is a characteristic of cancer. It was found that
cigarette smoking causes the hypermethylation of the p161NK4-alpha
gene in lung cancer patients [12]. Hammonds et al. [13] reported that
in fact smoking increases expression of hepatic DMT. Carcinogen
treatment increases expression of DMT as an early event in
carcinogenesis. Tabish et al. [14] showed that carcinogens such as
benzene, hydroquinone, styrene, carbon tetrachloride and
trichloethylene caused DNA methylation, presumably mediated by
DMT. Belinsky et al. [15] showed that carcinogen treatment results in
an increase in cytosine DNA-methyltransferase in target cells and this
is an early event in lung cancer induced by carcinogen.

The question that has up to now been left unanswered is just how
does a carcinogen induce expression of the gene coding for DMT?. It is
the aim of this paper to offer a series of events that describe the
mechanism whereby carcinogens can induce expression of oncogenic
genes in general and DMT gene in particular.

In another of our earlier papers [16] we reviewed the extensive
evidence that endocytosis and action at the lysosomal level is essential

for carcinogen action. This evidence consisted of findings that
inhibition of lysosomal degradation of proteins blocked the
carcinogenic process. Cathepsin inhibitors such as leupeptin, antipain,
etc. were used in these studies, The same situation applies to
mitogenesis induced by various growth factors [17-23]. These growth
factors operate by receptors on the cell membrane. Estrogen is a
carcinogen [24]. As reviewed in an earlier publication by this author
[25], there is much emerging evidence that estrogen too exerts its
action via receptors on the cell membrane and that endocytosis plays a
vital role in the action of sex hormones. .

Thus we come to the first event when a carcinogen or a mitogen
attacks its target cell: An endocytic process occurs resulting in delivery
of the carcinogen-(cell membrane) receptor complex (Ca-Re) or the
mitogen-receptor complex (Mi-Re) to the lysosome where the
complex undergoes degradation into di and tripeptides.

What could this endocytic process, this degradation of mitogen or
carcinogen receptors, play a role in the carcinogenic or mitogenic
process? To answer this question we have some clues:

1. It is known that some genes are usually, in the absence of
inducing agent, are repressed by protein repressors.

2. It is also known that there is specificity in the action of small
peptides on proteins [26-28]. This opens the possibility that small
peptides, produced on degradation of endocytosed Mi -Re or Ca-
Re interact very specifically with proteins comprising gene
repressors. It is quite conceivable that such an interaction can
cause a change in the conformation of the repressors such that it
can no longer bind to its cognate gene. That is these small
peptides, acting in a very specific manner, displace the repressor
from its gene. This releases the gene for expression. Tp
summarize our proposal in equations:

Re- + Ca (or Mi) = Re-Ca (or Mi-Re)

Ca-Re(or Mi-Re) = lysosomal proteases (i.e.cathepsins) = mixtures
of di-and tripeptides.

These small peptides (with the aid of specific permeases), on
formation leave the lysosomes and enter the nucleus. There they bind
to various repressor proteins to liberate the Gene (Ge) for expression.
That is: Ge=gene; Rp=repressor

Small peptide (formed in lysosomes as described above) + Ge-Rp
=small peptide-Rp + Ge (free for expression).

As can be seen from our proposal, small peptides formed from
degradation (by lysosomal cathepsins) of endocytosed mitogen-(or
carcinogen)-receptor complexes might actually have important
determinants of just which genes are to be expressed and which will
remain repressed, on treatment with either a carcinogen or a non-
carcinogenic mitogen (growth factor).

That leads to another concept: The identity of the genes that are
derepressed (divested of repressor, thus activated) and which remain
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repressed is determined by the nature of the small peptides produced
in the endocytic process described above. This is determined by the
following factors:

1. The nature of the proteases in the target cell. It was shown by
Tanji [29]. That there are different cathepsin D isoforms and that
these cathepsin D isoforms each has a different specificity. That
is each isoform of cathepsin D cleaves a protein at a different
peptide linkage. This will yield a different collection of small
peptides formed when each isoform acts on endocytsed Mi-Re or
Ca-Re complex. What determines which isoform of cathepsin D
will be present in a target cell? It is not unreasonable to propose
that heredity might well determine which isoform will be present
in cells treated with any cytokine, that is that there is a hereditary
polymorphism among cathepsins [30,31].

2. The nature of the receptors. Here again there is polymorphism
such as that observed in the case of T-cell receptors [32,33]. It
seems apparent that with a different substrate for the lysosomal
proteases, a different set of small peptide fragments will be
formed on degradation of the endocytosed receptor.

Thus one cell, cell A, equipped with one isoform of the cytokine
receptor and one isoform of cathespin in its lysosomes will produce a
particular set of small peptide gene derepressors, compared with
another cell (in another organism) (cell B) will produce another set of
small peptide gene activators. In one case (cell A) (cell B) the activators
so formed (as fragments or an endocytosed cytokine receptor) will
contain all the small peptides (di-and tripeptides)need to derepress all
the oncogenes needed to initiate and develop a cancer while another
cell (Cell B) may not be so endowed.

Cell A will become transformed into a clinical cancer (a neoplasia)
while cell B may (depending on the nature of the small peptides
produced in the endocytic process described above might) just
produce a hyperplasia. Thus whether a cell will be transformed by an
agent will be determined on the nature of the small peptides produced
on degradation (in lysosomes) of its endocytosed agent-receptor
complex, and this in turn is determined by the nature of its receptor
and the nature of its lysosomal proteases (i.e. which receptor isoform
and which cathepsin isoform is present in the target cell). This in turn
is probably determined by hereditary factors.

What does all this have to do with DNA-MTase, which is the
subject of this paper? From the above discussion, a possible answer
emerges: In a cell destined to enter the epigenetic pathway to
carcinogenesis or mitogenesis there is produced a set of small peptides
which are capable of causing the repressors of the DMT gene to
dissociate from the gene and thus induce the transcription of that gene
or set of genes that give rise to DMT. In a cell destined to undergo
carcinogenesis all the other oncogenes needed to form a cancer are
activated while in a cell destined to undergo non-carcinogenic
mitogenesis degradation of endocytosed agent-receptor complexes fail
to produce those small peptides needed to derepress all the oncogenes
(including perhaps the gene(s) coding for DMT) needed to give rise to
a cancer. They produce merely a hyperplastic rather than a neoplastic
situation.

This proposed mechanism therefore, in sum, answers the questions:

1) What is the role of endocytosis and lysosomal protease in the
action of carcinogens and mitogens?

2) What role can small peptides produce effects on gene expression?

3) How can a carcinogen or a mitogen cause there to be increased
m-RNA for DMT in treated cells?

4) How can hereditary factors determine whether an agent will
produce hyperplasia in one cell (or one organism) and produce a
neoplasia in another cell or even remain unchanged?

To test the above concepts, the following experiments might be
performed.

Determine if in fact lysosomal protease inhibitors (including
leupeptin, methylamine, antipain, etc.) inhibit production of DMT m-
RNA in carcinogen treated cells.

Determine the presence of any proteins on the cell surface of cells
known to be transformed by a particular agent which form a complex
with the transforming agent.

Determine if there are any differences in carcinogen cell surface
receptors and among the endolysosomal proteases between a cell line
that is transformed compared with a cell line that is not transformed.

The above proposed series of events producing DMT might well be
testable.

NOTE: That small peptides can regulate specific gene expression is
not unprecedented. Indeed there have been reported some examples of
specific small peptides activating specific genes [34-36]. In view of
these reports it is not unreasonable to propose, as suggested by the
mechanism offered in this paper, that small peptides obtained by
degradation of endocytosed agent-receptor complexes could act in a
similar manner: activating(by divesting genes of their repressors)
genes giving rise to new cell growth, including the gene(s) coding for
DMT.
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